Author
Peak Scientific
Peak Scientific is a leading innovator in the design, manufacture and support of high performance gas generators for analytical laboratories, with direct operations in every continent around the world.
Tags
Article
Product
Video
Logo of LinkedIn

Why switch from helium to hydrogen gas for GC?

We, 3.3.2021
| Original article from: Peak Scientific
Helium is commonly used in GC as a carrier gas, offering good separation results. However, helium gas is a finite resource with a fluctuating price tag as its availability continues to decrease.
Video placeholder
  • **Photo: ** Peak Scientific: Why switch from helium to hydrogen gas for GC?
  • Video: Peak Scientific: Switching Carrier Gas

For this reason among other benefits, a number of gas chromatography (GC) professionals are converting to hydrogen gas using a hydrogen generator as their carrier gas supply. In this blog, we explain exactly why.

Reliable and convenient

As a non-renewable resource, helium gas is becoming increasingly scarce, leading to supply shortages and an increase in costs for numerous industries, including analytical laboratories. For labs relying on helium, a lack of supply can cause delays in sample analysis and a general disruption to day-to-day workflow.

Working with an in-house hydrogen generator, on the other hand, is a more reliable, inexpensive and convenient way of performing GC analysis. With a hydrogen generator, labs can produce their own high purity carrier gas supply without having to depend on cylinder deliveries or go over their budget due to a sudden spike in helium prices. Once installed, a hydrogen generator stays in your lab, eliminating all the logistical hassles associated with scheduling helium gas orders, planning cylinder changeovers and installation. A gas generator provides peace of mind, knowing you have access to a constant supply of hydrogen gas and not having to worry about running out of carrier gas mid-analysis.

Peak Scientific: Carrier gas Hydrogen as an alternative to Helium in gas chromatography (GC)

Safe

Unlike a pressurized gas cylinder, a hydrogen generator does not store high volumes of gas which could pose a potential safety hazard. When working with a gas cylinder, laboratory staff have to be on the lookout for any signs of leaks or damage on the cylinder in order to prevent any explosion or fire risk due to such high volumes of pressurized gas.

With a hydrogen generator, however, labs can minimize these risks. A hydrogen generator will only generate the amount of hydrogen gas required to meet instrument need, meaning very small volumes of gas are stored at any one time. Performing analysis with a hydrogen generator also eliminates the requirement of transporting cylinders which could potentially be dangerous if not handled carefully.

Labs working with hydrogen generator can also restrict outside contact and limit Covid-19 contact transmission. Once installed, a hydrogen generator can be operated fully operated by a lab’s members of staff, allowing labs to eliminate contact with third party suppliers.

Beyond the absence of pressurized gas storage, a hydrogen generator comes equipped with advanced built-in fail-safe technology. These safety features prompt the hydrogen generator to shutdown in the unlikely event of a leak, maintaining safety in the lab.

Environmentally friendly

A hydrogen generator only requires a one-time delivery for installation. From then on, your hydrogen generator stays in the lab, eliminating regular cylinder deliveries, thereby reducing your lab’s overall carbon footprint.

Another environmentally friendly consideration is the process by which hydrogen gas is generated. A hydrogen generator produces hydrogen gas from deionized water, offering a renewable alternative to helium gas. Producing hydrogen gas from deionized water is also in contrast to the energy-intensive process of steam reformation methane, which is the most common method of obtaining cylinder hydrogen.

Shorter run times

Speedier analysis is another advantage to using hydrogen gas instead of helium. Hydrogen gas has a higher optimal linear velocity than helium, therefore in many cases increasing a lab’s throughput by improving analysis speed.

Peak Scientific: Van Deemter curve

As demonstrated in the gasoline analysis of Fig. 1, the analysis time was shortened with hydrogen carrier gas. Since hydrogen gas can flow gas at a lower supply pressure than helium, it is suitable for high speed analysis using a narrow bore capillary column.

Fig. 1 Peak Scientific: Shortening the analysis of gasoline by changing the carrier gas helium to hydrogen

Making the switch

If you’re looking to convert to hydrogen gas, you need to consult the GC Method list to confirm your method can indeed use hydrogen gas as an alternative to helium. It’s also important to refer to your method translation software for a simulation of the effect of changing carrier gas. There are GC instruments facilitating this conversion, such as Nexis GC-2030 by Shimadzu, which allows GC practitioners to switch carrier gas in the same sample run without adjusting any setups. You can refer to our step-by-step guide for more information on converting carrier gas.

For a safe and reliable source of hydrogen gas, Peak Scientific’s Precision Hydrogen Trace range of hydrogen generators make the switch even easier with user friendly touchscreen operation. Specifically designed for GC and also suitable for FID, Precision Hydrogen Trace is available in various flow rates for all lab gas requirements, all available at a maximum purity of 99.99999%. Offering greater safety, Precision Hydrogen Trace comes in a compact and space-saving design, maximizing your lab’s floorspace.

Peak Scientific: Hydrogen gas generator Precision Hydrogen Trace

Although helium is a popular carrier gas choice in GC, the difficulty in obtaining the gas has made more labs reconsider their gas supply, seeing an increase in the shift of carrier gas from helium to hydrogen gas. When all aspects are considered, it is easy to understand what’s driving the switch: the unrivalled reliability and peace of mind that can only be provided by a hydrogen generator.

Peak Scientific
 

Related content

Comprehensive Approach for Successful Microplastics Analysis

Applications
| 2024 | Shimadzu
Instrumentation
FTIR Spectroscopy
Manufacturer
Shimadzu
Industries
Environmental

Monitoring Dimethylacetamide in Complex Water Matrix Using GC-MS/MS (MRM)

Applications
| 2024 | Shimadzu
Instrumentation
GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Shimadzu
Industries
Environmental

Interview: Using Agilent Resolve to Support Agricultural Research

Others
| 2024 | Agilent Technologies
Instrumentation
RAMAN Spectroscopy
Manufacturer
Agilent Technologies
Industries
Food & Agriculture

Quantification of cotton content in textiles by near-infrared spectroscopy

Applications
| 2024 | Metrohm
Instrumentation
NIR Spectroscopy
Manufacturer
Metrohm
Industries
Materials Testing

Estimation of Ethylene Glycol and Diethylene Glycol in Propylene Glycol, Glycerin, and Syrup Samples with the Agilent 8890 GC

Applications
| 2024 | Agilent Technologies
Instrumentation
GC
Manufacturer
Agilent Technologies
Industries
Pharma & Biopharma
 

Related articles


Presentation | Video

Sampling body odor for healthcare monitoring: how to avoid the pitfalls (Elsa Boudard, MDCW 2024)

Solid sorbent sampling and thermodesorption into comprehensive TD-GC×GC/ToFMS offers high sensitivity and high resolution for the analysis of body odor.
The Multidimensional Chromatography (MDC) Workshop
more

Presentation | Video

Exploring arson investigations with multi-dimensional chromatography (Gwen O'Sullivan, MDCW 2024)

In this presentation, we will illuminate the current regulatory landscape of fire debris analysis governed by ASTM International standards, while outlining method development for GC×GC.
The Multidimensional Chromatography (MDC) Workshop
more

Article | Interview

Around the world with The Multidimensional Chromatography Workshop

In this episode, podcast host Dr. Dwight Stoll talks with Dr. Katelynn Perrault Uptmor, Dr. Pierre-Hugues Stefanuto, and Dr. Petr Vozka about the multidimensional chromatography workshop (MDCW)
LCGC
more

Article | Academy

Free NIST Data Processing Software Lab for Universities - Part 1: Very Basic Theory of GCMS Analyses

In the first part we will introduce you to the very basic theory of GC-MS analyses
James Little/Mass Spec Interpretation Services
more
 

Related content

Comprehensive Approach for Successful Microplastics Analysis

Applications
| 2024 | Shimadzu
Instrumentation
FTIR Spectroscopy
Manufacturer
Shimadzu
Industries
Environmental

Monitoring Dimethylacetamide in Complex Water Matrix Using GC-MS/MS (MRM)

Applications
| 2024 | Shimadzu
Instrumentation
GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Shimadzu
Industries
Environmental

Interview: Using Agilent Resolve to Support Agricultural Research

Others
| 2024 | Agilent Technologies
Instrumentation
RAMAN Spectroscopy
Manufacturer
Agilent Technologies
Industries
Food & Agriculture

Quantification of cotton content in textiles by near-infrared spectroscopy

Applications
| 2024 | Metrohm
Instrumentation
NIR Spectroscopy
Manufacturer
Metrohm
Industries
Materials Testing

Estimation of Ethylene Glycol and Diethylene Glycol in Propylene Glycol, Glycerin, and Syrup Samples with the Agilent 8890 GC

Applications
| 2024 | Agilent Technologies
Instrumentation
GC
Manufacturer
Agilent Technologies
Industries
Pharma & Biopharma
 

Related articles


Presentation | Video

Sampling body odor for healthcare monitoring: how to avoid the pitfalls (Elsa Boudard, MDCW 2024)

Solid sorbent sampling and thermodesorption into comprehensive TD-GC×GC/ToFMS offers high sensitivity and high resolution for the analysis of body odor.
The Multidimensional Chromatography (MDC) Workshop
more

Presentation | Video

Exploring arson investigations with multi-dimensional chromatography (Gwen O'Sullivan, MDCW 2024)

In this presentation, we will illuminate the current regulatory landscape of fire debris analysis governed by ASTM International standards, while outlining method development for GC×GC.
The Multidimensional Chromatography (MDC) Workshop
more

Article | Interview

Around the world with The Multidimensional Chromatography Workshop

In this episode, podcast host Dr. Dwight Stoll talks with Dr. Katelynn Perrault Uptmor, Dr. Pierre-Hugues Stefanuto, and Dr. Petr Vozka about the multidimensional chromatography workshop (MDCW)
LCGC
more

Article | Academy

Free NIST Data Processing Software Lab for Universities - Part 1: Very Basic Theory of GCMS Analyses

In the first part we will introduce you to the very basic theory of GC-MS analyses
James Little/Mass Spec Interpretation Services
more
 

Related content

Comprehensive Approach for Successful Microplastics Analysis

Applications
| 2024 | Shimadzu
Instrumentation
FTIR Spectroscopy
Manufacturer
Shimadzu
Industries
Environmental

Monitoring Dimethylacetamide in Complex Water Matrix Using GC-MS/MS (MRM)

Applications
| 2024 | Shimadzu
Instrumentation
GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Shimadzu
Industries
Environmental

Interview: Using Agilent Resolve to Support Agricultural Research

Others
| 2024 | Agilent Technologies
Instrumentation
RAMAN Spectroscopy
Manufacturer
Agilent Technologies
Industries
Food & Agriculture

Quantification of cotton content in textiles by near-infrared spectroscopy

Applications
| 2024 | Metrohm
Instrumentation
NIR Spectroscopy
Manufacturer
Metrohm
Industries
Materials Testing

Estimation of Ethylene Glycol and Diethylene Glycol in Propylene Glycol, Glycerin, and Syrup Samples with the Agilent 8890 GC

Applications
| 2024 | Agilent Technologies
Instrumentation
GC
Manufacturer
Agilent Technologies
Industries
Pharma & Biopharma
 

Related articles


Presentation | Video

Sampling body odor for healthcare monitoring: how to avoid the pitfalls (Elsa Boudard, MDCW 2024)

Solid sorbent sampling and thermodesorption into comprehensive TD-GC×GC/ToFMS offers high sensitivity and high resolution for the analysis of body odor.
The Multidimensional Chromatography (MDC) Workshop
more

Presentation | Video

Exploring arson investigations with multi-dimensional chromatography (Gwen O'Sullivan, MDCW 2024)

In this presentation, we will illuminate the current regulatory landscape of fire debris analysis governed by ASTM International standards, while outlining method development for GC×GC.
The Multidimensional Chromatography (MDC) Workshop
more

Article | Interview

Around the world with The Multidimensional Chromatography Workshop

In this episode, podcast host Dr. Dwight Stoll talks with Dr. Katelynn Perrault Uptmor, Dr. Pierre-Hugues Stefanuto, and Dr. Petr Vozka about the multidimensional chromatography workshop (MDCW)
LCGC
more

Article | Academy

Free NIST Data Processing Software Lab for Universities - Part 1: Very Basic Theory of GCMS Analyses

In the first part we will introduce you to the very basic theory of GC-MS analyses
James Little/Mass Spec Interpretation Services
more
 

Related content

Comprehensive Approach for Successful Microplastics Analysis

Applications
| 2024 | Shimadzu
Instrumentation
FTIR Spectroscopy
Manufacturer
Shimadzu
Industries
Environmental

Monitoring Dimethylacetamide in Complex Water Matrix Using GC-MS/MS (MRM)

Applications
| 2024 | Shimadzu
Instrumentation
GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Shimadzu
Industries
Environmental

Interview: Using Agilent Resolve to Support Agricultural Research

Others
| 2024 | Agilent Technologies
Instrumentation
RAMAN Spectroscopy
Manufacturer
Agilent Technologies
Industries
Food & Agriculture

Quantification of cotton content in textiles by near-infrared spectroscopy

Applications
| 2024 | Metrohm
Instrumentation
NIR Spectroscopy
Manufacturer
Metrohm
Industries
Materials Testing

Estimation of Ethylene Glycol and Diethylene Glycol in Propylene Glycol, Glycerin, and Syrup Samples with the Agilent 8890 GC

Applications
| 2024 | Agilent Technologies
Instrumentation
GC
Manufacturer
Agilent Technologies
Industries
Pharma & Biopharma
 

Related articles


Presentation | Video

Sampling body odor for healthcare monitoring: how to avoid the pitfalls (Elsa Boudard, MDCW 2024)

Solid sorbent sampling and thermodesorption into comprehensive TD-GC×GC/ToFMS offers high sensitivity and high resolution for the analysis of body odor.
The Multidimensional Chromatography (MDC) Workshop
more

Presentation | Video

Exploring arson investigations with multi-dimensional chromatography (Gwen O'Sullivan, MDCW 2024)

In this presentation, we will illuminate the current regulatory landscape of fire debris analysis governed by ASTM International standards, while outlining method development for GC×GC.
The Multidimensional Chromatography (MDC) Workshop
more

Article | Interview

Around the world with The Multidimensional Chromatography Workshop

In this episode, podcast host Dr. Dwight Stoll talks with Dr. Katelynn Perrault Uptmor, Dr. Pierre-Hugues Stefanuto, and Dr. Petr Vozka about the multidimensional chromatography workshop (MDCW)
LCGC
more

Article | Academy

Free NIST Data Processing Software Lab for Universities - Part 1: Very Basic Theory of GCMS Analyses

In the first part we will introduce you to the very basic theory of GC-MS analyses
James Little/Mass Spec Interpretation Services
more
Other projects
Follow us
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o., all rights reserved.