GCMS
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike

Volatile organic compounds

Applications |  | GL SciencesInstrumentation
GC/MSD, HeadSpace, GC columns, Consumables
Industries
Manufacturer
GL Sciences

Summary

Significance of the Topic


Volatile organic compounds in water represent a critical concern for environmental monitoring, regulatory compliance and public health protection. Reliable analysis of trace-level VOCs supports water quality assessment in drinking water, wastewater and effluent streams.

Objectives and Study Overview


This application report demonstrates a headspace gas chromatography method for simultaneous separation and detection of 23 common volatile organic compounds in aqueous samples. The study aims to evaluate the performance of an inert capillary column and a headspace GCMS configuration to achieve robust peak shape, reproducibility and sensitivity for environmental analysis.

Used Instrumentation

  • Gas chromatograph with headspace sampler and mass spectrometric detector
  • InertCap AQUATIC capillary column 0.25 mm I D x 60 m, film thickness 1.0 μm
  • Carrier gas system using helium at 120 kPa

Methodology


Water samples (10 mL) were sealed in 22 mL vials and equilibrated at 60 °C for 15 minutes. A 1 mL headspace gas aliquot was injected in split mode at 3 mL/min. Injection port was maintained at 160 °C. The column oven program started at 40 °C (5 min hold), ramped to 80 °C at 5 °C/min, then to 200 °C at 10 °C/min with a final 5 minute hold. The interface temperature was set to 200 °C. Mass spectrometric detection scanned m/z 45 to 250.

Main Results and Discussion


The chromatographic separation achieved baseline resolution for 23 target VOCs including chlorinated ethenes, chloromethanes, chloroethanes, chloropropanes, trichloroethylene, toluene and xylenes. Peak symmetry and minimal tailing highlighted the inertness of the column surface, especially critical for reactive analytes such as 1,1-dichloroethylene and trans-1,2-dichloroethylene. Retention times were reproducible across replicate injections, supporting method robustness.

Benefits and Practical Applications

  • High inertness reduces adsorption of polar or labile VOCs, improving quantitation accuracy.
  • Headspace sampling automates extraction from aqueous matrices, minimizing sample preparation time.
  • Mass spectral detection delivers selective identification and quantification, even in complex mixtures.
  • Applicability to drinking water, wastewater discharge and environmental monitoring laboratories.

Future Trends and Potential Applications


Integration of high-resolution accurate mass spectrometry can enhance identification of unknown VOCs. Advances in automated sample throughput and multiplexed headspace systems will further streamline routine environmental screening. Miniaturized and field-deployable GCMS platforms may enable on-site analysis of water contaminants.

Conclusion


The described headspace GCMS method using an InertCap AQUATIC column provides a reliable and sensitive approach for comprehensive VOC analysis in water matrices. Its robustness and inertness support regulatory compliance testing, process monitoring and research applications in environmental and industrial laboratories.

Reference


No external references were provided in the source document.

Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.

Downloadable PDF for viewing
 

Similar PDF

Toggle
Organic Solvents
Organic Solvents
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications Organic Solvents Data No. GA221-0644 Volts V 0..00 0.02 0.04 0.06 0.08 0.10 25+26 13 12 11 15 17 56 8 1 34 7 14 9 2 16 10 6 GA221 8 0644 VOC…
Key words
キシレン, キシレンクロロトルエン, クロロトルエンmethylene, methyleneinertcap, inertcapchlorotoluene, chlorotoluenevoc, vocdichloride, dichlorideガスクロマトグラフィー, ガスクロマトグラフィーイナートサーチ, イナートサーチキャピラリーカラム, キャピラリーカラムイナートキャップ, イナートキャップジーエルサイエンス, ジーエルサイエンスクロマトグラム, クロマトグラムxylene, xyleneinertsearch
Residual solvents in pharmaceuticals
Residual solvents in pharmaceuticals
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications R id l solvents Residual l t in i pharmaceuticals h ti l Data No. GA123-0850 180000 160000 140000 66 64 56 120000 63 58+59 100000 Acetone 80000 60000 40000 20000 0 0 アセトン…
Key words
alcohol, alcoholbutyl, butylmethyl, methylether, etherketone, ketoneethyl, ethylacetate, acetatepropyl, propylisopropyl, isopropylcellosolve, cellosolveacetic, aceticキシレン, キシレンester, esterisobutyl, isobutylacid
Pesticides
Pesticides
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications Pesticides Data No. GA227-0904 This chromatogram was provided by Saika Technological Institute Foundation. 1.50 (x1,000,000) (x1 000 000) TIC 1.25 1.00 0.75 0 50 0.50 0.25 0.00 7.5 GC GA227 InertCap Pesticides GC GA227…
Key words
methyl, methylヘキサクロロシクロヘキサン, ヘキサクロロシクロヘキサンpyriminobac, pyriminobacbhc, bhcピリミノバックメチル, ピリミノバックメチルピロキロン, ピロキロンペルメトリン, ペルメトリンダイアジノン, ダイアジノンtriflumizole, triflumizoleddvp, ddvppyrifenox, pyrifenoxpyroquilon, pyroquiloncnp, cnpparathion, parathionトリフルミゾール
Organic solvents
Organic solvents
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications Organic solvents Data No. GA140-851 14+15 200000 11 7 13 6 100000 2 16 8 10 4 12 9 1 3 17 5 0 0 2 Conditions Methyl alcohol 4 6 Time (min) 8…
Key words
xylene, xylenebutyl, butylキシレン, キシレンalcohol, alcoholvol, volcyclohexane, cyclohexaneエチレングリ, エチレングリチルアセテ, チルアセテブチルベンゼン, ブチルベンゼンルモノブチルエ, ルモノブチルエモノブチルグリコールエーテル, モノブチルグリコールエーテルsolvents, solventsイソブタノール, イソブタノールメチルイソブチルケトン, メチルイソブチルケトンester
Other projects
LCMS
ICPMS
Follow us
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike