Possibilities of Utilization of Modern Sample Preparation Methods for Gas Chromatographic Analyses in Beverage and Namely Brewing Analytics. Part III. – Solid-Phase Microextraction and Stir Bar Sorptive Extraction in Fatty Acids Analysis in Beer
Scientific articles | 2010 | Kvasny PrumyslInstrumentation
Free fatty acids influence key quality attributes of beer, including sensory profile, yeast vitality and foam stability. Medium-chain acids formed during fermentation can produce off-flavours even below individual sensory thresholds, while unsaturated long-chain acids contribute to ageing character through oxidative degradation. Rapid, solvent-minimized analytical methods are therefore essential for routine quality control in brewing.
This work (Part III) demonstrates the application of two modern sample-preparation microextraction techniques—headspace solid-phase microextraction (SPME) and stir-bar sorptive extraction (SBSE)—for determination of free fatty acids in beer. The study compares analytical performance, advantages and limitations of both approaches, and discusses their suitability for medium-chain (C6–C12) and long-chain (C14–C18) fatty acids.
Extraction procedures were performed on commercial pilsner-type beers and model samples (5 % ethanol in water) spiked with internal standards (heptanoic and undecanoic acids, 1.3 mg/L each). Key instrumentation and reagents included:
SPME headspace extractions were carried out at ambient temperature for 30 min with salting out; fibers were thermally desorbed in the injector at 250 °C. SBSE employed magnetic stirring at 1 000 rpm for 60 min, followed by solvent back-extraction (dichloromethane/hexane) for 40 min; medium-chain acids were directly injected, while long-chain acids required methylation (BF₃ in methanol) and hexane extraction.
Calibration curves (0.0015–8 mg/L) showed high linearity (r = 0.995–0.999) for both SPME and SBSE; quadratic fits further improved correlation. SPME recoveries for C6–C12 ranged from 95 % to 110 % (RSD ≤ 5 %), whereas SBSE recoveries for medium-chain acids were lower (57 %–89 %, RSD 4 %–7 %), due to limited extraction of polar compounds (log Kₒ/w for caproic acid = 1.88). SBSE achieved excellent recoveries (94 %–110 %) for long-chain acids (log Kₒ/w > 6), with RSD up to 16 % reflecting derivatization and back-extraction steps.
Advances may include optimized fiber coatings and stir-bar sorbents for enhanced polarity range, on-fiber derivatization to streamline long-chain acid analysis, full automation, and transfer of methods to other beverages or complex matrices for multi-residue screening.
SPME and SBSE represent complementary, user-friendly, and solvent-efficient sample-preparation techniques for gas-chromatographic determination of free fatty acids in beer. SPME excels in speed and precision for medium-chain acids, while SBSE provides comprehensive profiling including long-chain acids at the expense of longer processing time.
1. Chen EC-H. Utilization of wort fatty acids by yeast during fermentation. J Am Soc Brew Chem. 1980;38:148–153.
2. Drost BW, van Eerde P, Hoekstra SF, Strating J. Fatty acids and staling of beer. Proc Eur Brewery Convention Congress. 1971:451–458.
3. Clapperton JF. Caprylic flavour as a feature of beer flavour. J Inst Brew. 1978;84:90–92.
4. Clarke BJ, Davine DF, Hawthorne DB, Kavanagh TE, Moulder PJ. Factors affecting formation of medium chain fatty acids during fermentation. Tech Q Master Brew Assoc Am. 1981;18:188–194.
5. Clapperton JF. Fatty acids contributing to caprylic flavour in beer. J Inst Brew. 1978;84:107–112.
6. Dominguez XA, Canales AM. Oxidation of beer. Mechanism for degradation of unsaturated fatty acids. Brewers Digest. 1974;49:40–47.
7. Irwin AJ, Thompson DJ. Rapid method for extraction and analysis of beer flavour components. J Inst Brew. 1987;93:113–115.
8. Van der Meersche J, Devreux A, Masschelein CA. Formation des acides volatils dans la maturation de la bière. Proc Eur Brewery Convention Congress. 1979:787–800.
9. Hage T. Free fatty acids in beer – use of bonded-phase column in extraction for GC assay. Proc Fourth Eur Conf Food Chem. 1987:106–110.
10. Battistutta F, Buiatti S, Zenarola C, Zironi R. Rapid analysis of free medium-chain fatty acids and related esters in beer using SPE and HRGC. J High Resolut Chromatogr. 1994;17:662–664.
11. Horák T, Čulík J, Jurková M, Čejka P, Kellner V, Dvořák J, Hašková D. Modern sample-preparation for GC in beverage analytics. Part I – Literature review. Kvasny Prum. 2010;56(11–12):358–366.
12. Horák T, Čulík J, Jurková M, Čejka P, Kellner V, Dvořák J, Hašková D. Modern sample-preparation for GC in brewing analytics. Part II – SBSE. Kvasny Prum. 2010;56(11–12):390–395.
13. Horák T, Čulík J, Jurková M, Čejka P, Kellner V. Determination of fatty acids in beer by SPME. Kvasny Prum. 2005;51:374–377.
14. Horák T, Čulík J, Jurková M, Čejka P, Kellner V. Determination of free medium-chain fatty acids in beer by SBSE. J Chromatogr A. 2008;1196–1197:96–99.
15. Horák T, Čulík J, Čejka P, Jurková M, Kellner V, Dvořák J, Hašková D. Comparison of SPE, SPME and SBSE for free fatty acids in beer. J Agric Food Chem. 2009;57:11081–11085.
16. Pan L, Adams M, Pawliszyn J. Determination of fatty acids using SPME. Anal Chem. 1995;67:4396–4403.
17. Lancas FM, Queiroz MEC, Grossi P, Olivares IRB. Developments and applications of SBSE. J Sep Sci. 2009;32:813–824.
18. David F, Tienpont B, Sandra P. SBSE of trace organics from aqueous matrices. LCGC North Am. 2003;21:108–118.
19. Baltussen E, Sandra P, David F, Cramers C. SBSE, a novel extraction for aqueous samples: Theory and principles. J Microcolumn Sep. 1999;11:737–747.
GC, SPME, Thermal desorption
IndustriesFood & Agriculture
ManufacturerGERSTEL
Summary
Importance of the Topic
Free fatty acids influence key quality attributes of beer, including sensory profile, yeast vitality and foam stability. Medium-chain acids formed during fermentation can produce off-flavours even below individual sensory thresholds, while unsaturated long-chain acids contribute to ageing character through oxidative degradation. Rapid, solvent-minimized analytical methods are therefore essential for routine quality control in brewing.
Objectives and Overview of the Study
This work (Part III) demonstrates the application of two modern sample-preparation microextraction techniques—headspace solid-phase microextraction (SPME) and stir-bar sorptive extraction (SBSE)—for determination of free fatty acids in beer. The study compares analytical performance, advantages and limitations of both approaches, and discusses their suitability for medium-chain (C6–C12) and long-chain (C14–C18) fatty acids.
Methodology and Used Instrumentation
Extraction procedures were performed on commercial pilsner-type beers and model samples (5 % ethanol in water) spiked with internal standards (heptanoic and undecanoic acids, 1.3 mg/L each). Key instrumentation and reagents included:
- Gas chromatograph Chrompack CP 9001 with split/splitless injector and flame ionization detector
- Phenomenex ZB-WAX capillary column (30 m × 0.32 mm i.d., 0.25 μm film)
- SPME fibers (65 μm Carbowax-Divinylbenzene; manual holder)
- Gerstel Twister SBSE stir bar (PDMS, 0.5 mm coating)
- Carrier gas: helium 5.0; calibration grade hydrogen and synthetic air for FID
- Reagents: ammonium sulfate, BF₃–methanol, dichloromethane/hexane solvent mix
SPME headspace extractions were carried out at ambient temperature for 30 min with salting out; fibers were thermally desorbed in the injector at 250 °C. SBSE employed magnetic stirring at 1 000 rpm for 60 min, followed by solvent back-extraction (dichloromethane/hexane) for 40 min; medium-chain acids were directly injected, while long-chain acids required methylation (BF₃ in methanol) and hexane extraction.
Main Results and Discussion
Calibration curves (0.0015–8 mg/L) showed high linearity (r = 0.995–0.999) for both SPME and SBSE; quadratic fits further improved correlation. SPME recoveries for C6–C12 ranged from 95 % to 110 % (RSD ≤ 5 %), whereas SBSE recoveries for medium-chain acids were lower (57 %–89 %, RSD 4 %–7 %), due to limited extraction of polar compounds (log Kₒ/w for caproic acid = 1.88). SBSE achieved excellent recoveries (94 %–110 %) for long-chain acids (log Kₒ/w > 6), with RSD up to 16 % reflecting derivatization and back-extraction steps.
Benefits and Practical Applications of the Method
- Minimal or no solvent consumption
- Good repeatability and accuracy
- SPME: rapid (35 min overall), ideal for routine control of medium-chain fatty acids
- SBSE: robust stir bar handling, broad coverage including long-chain acids
Future Trends and Application Opportunities
Advances may include optimized fiber coatings and stir-bar sorbents for enhanced polarity range, on-fiber derivatization to streamline long-chain acid analysis, full automation, and transfer of methods to other beverages or complex matrices for multi-residue screening.
Conclusion
SPME and SBSE represent complementary, user-friendly, and solvent-efficient sample-preparation techniques for gas-chromatographic determination of free fatty acids in beer. SPME excels in speed and precision for medium-chain acids, while SBSE provides comprehensive profiling including long-chain acids at the expense of longer processing time.
Reference
1. Chen EC-H. Utilization of wort fatty acids by yeast during fermentation. J Am Soc Brew Chem. 1980;38:148–153.
2. Drost BW, van Eerde P, Hoekstra SF, Strating J. Fatty acids and staling of beer. Proc Eur Brewery Convention Congress. 1971:451–458.
3. Clapperton JF. Caprylic flavour as a feature of beer flavour. J Inst Brew. 1978;84:90–92.
4. Clarke BJ, Davine DF, Hawthorne DB, Kavanagh TE, Moulder PJ. Factors affecting formation of medium chain fatty acids during fermentation. Tech Q Master Brew Assoc Am. 1981;18:188–194.
5. Clapperton JF. Fatty acids contributing to caprylic flavour in beer. J Inst Brew. 1978;84:107–112.
6. Dominguez XA, Canales AM. Oxidation of beer. Mechanism for degradation of unsaturated fatty acids. Brewers Digest. 1974;49:40–47.
7. Irwin AJ, Thompson DJ. Rapid method for extraction and analysis of beer flavour components. J Inst Brew. 1987;93:113–115.
8. Van der Meersche J, Devreux A, Masschelein CA. Formation des acides volatils dans la maturation de la bière. Proc Eur Brewery Convention Congress. 1979:787–800.
9. Hage T. Free fatty acids in beer – use of bonded-phase column in extraction for GC assay. Proc Fourth Eur Conf Food Chem. 1987:106–110.
10. Battistutta F, Buiatti S, Zenarola C, Zironi R. Rapid analysis of free medium-chain fatty acids and related esters in beer using SPE and HRGC. J High Resolut Chromatogr. 1994;17:662–664.
11. Horák T, Čulík J, Jurková M, Čejka P, Kellner V, Dvořák J, Hašková D. Modern sample-preparation for GC in beverage analytics. Part I – Literature review. Kvasny Prum. 2010;56(11–12):358–366.
12. Horák T, Čulík J, Jurková M, Čejka P, Kellner V, Dvořák J, Hašková D. Modern sample-preparation for GC in brewing analytics. Part II – SBSE. Kvasny Prum. 2010;56(11–12):390–395.
13. Horák T, Čulík J, Jurková M, Čejka P, Kellner V. Determination of fatty acids in beer by SPME. Kvasny Prum. 2005;51:374–377.
14. Horák T, Čulík J, Jurková M, Čejka P, Kellner V. Determination of free medium-chain fatty acids in beer by SBSE. J Chromatogr A. 2008;1196–1197:96–99.
15. Horák T, Čulík J, Čejka P, Jurková M, Kellner V, Dvořák J, Hašková D. Comparison of SPE, SPME and SBSE for free fatty acids in beer. J Agric Food Chem. 2009;57:11081–11085.
16. Pan L, Adams M, Pawliszyn J. Determination of fatty acids using SPME. Anal Chem. 1995;67:4396–4403.
17. Lancas FM, Queiroz MEC, Grossi P, Olivares IRB. Developments and applications of SBSE. J Sep Sci. 2009;32:813–824.
18. David F, Tienpont B, Sandra P. SBSE of trace organics from aqueous matrices. LCGC North Am. 2003;21:108–118.
19. Baltussen E, Sandra P, David F, Cramers C. SBSE, a novel extraction for aqueous samples: Theory and principles. J Microcolumn Sep. 1999;11:737–747.
Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.
Similar PDF
Possibilities of Utilization of Modern Sample Preparation Methods for Gas Chromatographic Analysis of Beverages and especially Beer. Part II. – Stir Bar Sorptive Extraction
2010|GERSTEL|Scientific articles
KP10_390_395 10/18/10 12:52 PM Stránka 390 390 K VA S N Y P RU M . roč. 56 / 2010 – číslo 10 Možnosti využití moderních metod přípravy vzorků pro plynově chromatografické analýzy při analýze … Možnosti využití moderních metod…
Key words
sorptive, sorptivepdms, pdmsplynově, plynověmoderních, moderníchstir, stirpro, provyužití, využitípřípravy, přípravytyčince, tyčincesbse, sbsemíchací, míchacímožnosti, možnostianalýze, analýzebar, barpři
Determination of Fatty Acids in Beer by Fast Routine Analyse
2013||Scientific articles
58 Kvasny prum. 59 / 2013 (3) Stanovení mastných kyselin v pivu rychlou, rutinní metodou Stanovení mastných kyselin v pivu rychlou, rutinní metodou Determination of Fatty Acids in Beer by Fast Routine Analyse Tomáš HORÁK, Jiří ČULÍK, Marie JURKOVÁ, Pavel…
Key words
kyselina, kyselinafatty, fattyacid, acidacids, acidsmastných, mastnýchkyselin, kyselinchain, chainbeer, beervnitřní, vnitřnípivu, pivustanovení, stanovenírsd, rsdisomáselná, isomáselnástandard, standardoleic
FASTER GAS CHROMATOGRAPHY AND ITS UTILIZATION IN BREWING. PART 3. – THE DETERMINATION OF SOME LOW VOLATILE BEER FLAVOURS
2009||Scientific articles
304 KVASNÝ PRŮMYSL roč. 55 / 2009 – číslo 11–12 RYCHLEJŠÍ PLYNOVÁ CHROMATOGRAFIE A JEJÍ VYUŽITÍ V PIVOVARSTVÍ. ČÁST 3. – STANOVENÍ VYBRANÝCH SEMIVOLATILNÍCH SENZORICKY AKTIVNÍCH LÁTEK V PIVU FASTER GAS CHROMATOGRAPHY AND ITS UTILIZATION IN BREWING. PART 3. –…
Key words
kyselina, kyselinafatty, fattykvasný, kvasnýacid, acidprůmysl, průmyslacids, acidsmastných, mastnýchprůtoková, průtokovákyselin, kyselinkonvenční, konvenčnístanovení, stanovenínosného, nosnéhopivu, pivuvnitřní, vnitřníchain
APPLICATION OF SOME MODERN SAMPLE PREPARATION PROCEDURES FOR QUANTITATIVE DETERMINATION OF VICINAL DIKETONES IN BEER
2009|Thermo Fisher Scientific|Scientific articles
66 KVASNÝ PRŮMYSL roč. 55 / 2009 – číslo 3 VYUŽITÍ NĚKTERÝCH MODERNÍCH EXTRAKČNÍCH POSTUPŮ PRO KVANTITATIVNÍ STANOVENÍ VICINÁLNÍCH DIKETONŮ V PIVU APPLICATION OF SOME MODERN SAMPLE PREPARATION PROCEDURES FOR QUANTITATIVE DETERMINATION OF VICINAL DIKETONES IN BEER TOMÁŠ HORÁK, JIŘÍ…
Key words
diketones, diketonesvicinal, vicinaldiketonů, diketonůvicinálních, vicinálníchdiacetyl, diacetylsbse, sbsekvasný, kvasnýprůmysl, průmyslspme, spmestir, stiropakovatelnost, opakovatelnostbar, barcelková, celkovápolydimethylsiloxanové, polydimethylsiloxanovélátka