GCMS
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike

APPLICATION OF SOME MODERN SAMPLE PREPARATION PROCEDURES FOR QUANTITATIVE DETERMINATION OF VICINAL DIKETONES IN BEER

Scientific articles | 2009 | Kvasny PrumyslInstrumentation
GC, SPME
Industries
Food & Agriculture
Manufacturer
Thermo Fisher Scientific

Summary

Significance of the Topic


Vicinal diketones, particularly diacetyl (2,3-butanedione) and 2,3-pentanedione, are key off-flavour compounds in beer. Concentrations above sensory thresholds (0.05–0.10 mg/L for diacetyl; ≈1 mg/L for pentanedione) lead to undesirable buttery or honey-like aromas. Accurate quantification is essential for quality control in brewing to ensure consistent product flavour.

Objectives and Study Overview


This work evaluates and optimizes stir bar sorptive extraction (SBSE) for quantitative determination of vicinal diketones in beer. Analytical performance is compared with solid phase microextraction (SPME), and detection is carried out by gas chromatography with electron capture detection (GC-ECD).

Methodology and Instrumentation


  • Sample Preparation (SBSE): 10 mL beer or 5 % V/V ethanol model spiked with 2,3-hexanedione (40 µg/L), 2 g NaCl, stirred with a 10 mm×0.5 mm PDMS Twister at 800 rpm, room temperature, 20 min. Back-extraction in 200 µL hexane for 20 min.
  • Sample Preparation (SPME): Headspace extraction from 3 mL sample with 1.5 g NaCl using CAR/DVB 65 µm fiber, 30 min at room temperature; thermal desorption in GC inlet.
  • Chromatography: DB-624 column (60 m×0.32 mm i.d.×1.8 µm); oven 75 °C (10 min)→120 °C at 5 °C/min (1 min); splitless injector 220 °C; ECD at 180 °C; He carrier (150 kPa at 75 °C), N₂ make-up.

Main Results and Discussion


  • Detector Temperature: Optimum ECD temperature was 180 °C, balancing sensitivity and electrode cleanliness.
  • Salting-Out Effect: Addition of 2 g NaCl per 10 mL sample provided ~3.5-fold signal enhancement; increasing to 4 g gave minor gains (~2 %).
  • Extraction Kinetics: SBSE equilibrated by 20 min; extending to 40 min improved total response by only 4 %. Back-extraction was complete within 20 min.
  • Calibration: Quadratic calibration yielded correlation coefficients >0.997 for both analytes; SBSE linear range for diacetyl was 0.100–0.400 mg/L; SPME extended to lower levels.
  • Repeatability: SBSE RSD of peak-area ratio was 20 % for diacetyl and 5.6 % for pentanedione; SPME achieved RSD ≤7 % for both.
  • Robustness: Varying ethanol content (0–8 % V/V) produced RSD <5.1 % (SBSE) and <3.9 % (SPME) for response ratios.

Benefits and Practical Applications of the Method


SBSE with solvent back-extraction offers a low-cost, simple alternative to SPME and classical steam-distillation methods when analyte concentrations exceed 0.100 mg/L. It avoids sample heating, reducing artefact formation, and is suitable for routine brewery quality control.

Future Trends and Opportunities


Advances may include automated SBSE systems, direct thermal desorption to GC–MS for enhanced selectivity, and extension of SBSE to other beer flavour compounds. Development of in-line monitoring and miniaturized extraction would support real-time process control.

Conclusion


The optimized SBSE protocol enables reliable quantification of diacetyl and 2,3-pentanedione in beer with straightforward handling and satisfactory precision at moderate concentration levels. SPME remains preferred for trace-level detection.

Instrumentation


  • Twister PDMS (10 mm×0.5 mm) – Gerstel
  • SPME fiber CAR/DVB 65 µm – Supelco
  • Gas Chromatographs: CP-9001 (Chrompack), HRGC 5300 Mega (Carlo Erba)
  • Autosampler ASG 40 – Labio

References


  1. Stewart, G.: Fermentation-yesterday, today and tomorrow. Tech. Q. Master Brew. Assoc. Am. 14, 1977, 1–15
  2. Fix, G.: Diacetyl: Formation, reduction and control. Brew. Tech. 1(2), 1993
  3. Linko, M. et al.: Recent advances in the malting and brewing industry. J. Biotechnol. 65, 1998, 85–98
  4. Sigsgaard, P.: Breeding of new brewer’s yeast. Cerevisia Biotechnol. 19, 1994, 29–32
  5. Wainwright, R.: Diacetyl – a review, Part I & II. J. Inst. Brew. 79, 1973, 451–470
  6. Shimwell, J. L.: New light on ‘Sarcina’ question. J. Inst. Brew. 45, 1939, 137–145
  7. Boulton, C., Quain, D.: Biochemistry of fermentation – vicinal diketones. In Brewing Yeast and Fermentation. Blackwell, 2001, 128–137
  8. Hansen, J., Kielland-Brandt, M.: Modification of biochemical pathways in industrial yeast. J. Biotechnol. 49, 1996, 1–12
  9. Gjertsen, P. et al.: Diacetyl im Bier. Monatsschr. Brauerei 17, 1964, 232–234
  10. Esser, K. D., Kremkow, C.: Bestimmung des Diacetylgehalts im Bier. Monatsschr. Brauerei 23, 1970, 11–14
  11. Zürcher, Ch., Gruss, R.: Vergleich von gaschromatographischer und spektrophotometrischer VDK-Bestimmung. Monatsschr. Brauerei 30, 1977, 13–15
  12. Morrison, N. M., Bendiak, D. S.: Today’s diacetyl: the total vicinal diketone profile of beer. Tech. Q. Master Brew. Assoc. Am. 24, 1987, 14–20
  13. Hodge, J. E.: Origins of flavors in foods. Symposium on Foods. AVI, 1967, 465–491
  14. Engan, S.: Off-flavours in beer. Brauwelt Int. III/1991, 217–223
  15. Montville, T. J. et al.: Ion-exchange HPLC with UV detection for acetoin and diacetyl. J. Microbiol. Methods 7, 1987, 1–8
  16. Baumann, R. A. et al.: Detection of diacetyl in LC using phosphorescence. Anal. Chem. 57, 1985, 1815–1818
  17. Matsuura, H. et al.: Determination of vicinal diketones in foods by HPLC. Bunseki Kagaku 39, 1990, 405–409
  18. Moree-Testa, P., Saint-Jalm, Y.: Determination of α-dicarboxyl compounds in cigarette smoke. J. Chromatogr. 217, 1981, 197–208
  19. Verhagen, L. C. et al.: Analysis of vicinal diketones in beer by HPLC. Proc. Congr. Eur. Conv. 21, 1987, 615–622
  20. Yamaguchi, M. et al.: Determination of glyoxal, methylglyoxal, diacetyl and 2,3-pentandione by HPLC with fluorescence detection. J. Liq. Chromatogr. 17, 1994, 203–211
  21. Damiani, P., Burini, G.: Determination of diacetyl in butter by fluorometric HPLC. J. Assoc. Off. Anal. Chem. 71, 1988, 462–465
  22. McCarthy, L. S.: Analysis of diacetyl and pentanedione in beer by HPLC-fluorometric detection. J. Am. Soc. Brew. Chem. 53, 1995, 178–181
  23. Pejin, J. D. et al.: GC/MS with SPE for diacetyl and pentanedione in beer. APTEFF 33, 2002, 45–54
  24. Pejin, J. et al.: GC/MS-SPE for vicinal diketone quantification during fermentation. J. Am. Soc. Brew. Chem. 64, 2006, 52–60
  25. Ulbert, F.: Headspace GC estimation of yogurt volatiles. J. Assoc. Off. Anal. Chem. 74, 1991, 630–634
  26. Buckee, G. K., Mundy, A. P.: Determination of vicinal diketones in beer by GC-HS. J. Inst. Brew. 100, 1994, 247–253
  27. Hardwick, B. C.: Selective measurement of acetohydroxy acid precursors by aniline decarboxylation. J. Am. Soc. Brew. Chem. 52, 1994, 106–110
  28. Lee, S. M., Drucker, D. B.: Analysis of acetoin and diacetyl in bacterial cultures by GLC. J. Clin. Microbiol. 2, 1975, 162–164
  29. Čulík, J. et al.: Optimal conditions for GC-HS determination of vicinal diketones. Poster, Bratislava, 1998
  30. Pawliszyn, J.: Solid phase microextraction with thermal desorption. Anal. Chem. 62, 1990, 2145–2148
  31. Horák, T. et al.: SPME determination of vicinal diketones in beer. Kvasny Prum. 47, 2001, 316–321
  32. Baltussen, E. et al.: Theory and principles of SBSE. J. Microcolumn Sep. 11, 1999, 737–747
  33. Sandra, P. et al.: SBSE: a novel extraction technique. Gerstel AppNote 1/2000
  34. Horák, T. et al.: SBSE analysis of ester and fatty acids in beer by GC. Kvasny Prum. 54, 2008, 102–107
  35. Horák, T. et al.: Free medium-chain fatty acids in beer by SBSE. J. Chromatogr. A 1196–1197, 2008, 96–99
  36. Harms, D. et al.: SBSE-HPLC analysis of bitter acids in beer and wort. Gerstel AppNote 5/2001
  37. Beltran, J. et al.: SPME quantitative analysis of organophosphorus pesticides in water. J. Chromatogr. A, 808, 1998, 257–263

Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.

Downloadable PDF for viewing
 

Similar PDF

Toggle
Possibilities of Utilization of Modern Sample Preparation Methods for Gas Chromatographic Analysis of Beverages and Especially beer. Part I. – Literature Review
358 K VA S N Y P RU M . roč. 56 / 2010 – číslo 9 Možnosti využití moderních metod přípravy vzorků pro plynově chromatografické analýzy při analýze nápojů … Možnosti využití moderních metod přípravy vzorků pro plynově chromatografické…
Key words
pivo, pivobeer, beerdetektor, detektorvzorek, vzorekanalyty, analytydms, dmsvíno, vínoextrakce, extrakceecd, ecdliteratura, literaturafid, fidmicroextraction, microextractionaplikace, aplikacevzorků, vzorkůspme
Possibilities of Utilization of Modern Sample Preparation Methods for Gas Chromatographic Analysis of Beverages and especially Beer. Part II. – Stir Bar Sorptive Extraction
KP10_390_395 10/18/10 12:52 PM Stránka 390 390 K VA S N Y P RU M . roč. 56 / 2010 – číslo 10 Možnosti využití moderních metod přípravy vzorků pro plynově chromatografické analýzy při analýze … Možnosti využití moderních metod…
Key words
sorptive, sorptivepdms, pdmsplynově, plynověmoderních, moderníchstir, stirpro, provyužití, využitípřípravy, přípravytyčince, tyčincesbse, sbsemíchací, míchacímožnosti, možnostianalýze, analýzebar, barpři
Possibilities of Utilization of Modern Sample Preparation Methods for Gas Chromatographic Analyses in Beverage and Namely Brewing Analytics. Part III. – Solid-Phase Microextraction and Stir Bar Sorptive Extraction in Fatty Acids Analysis in Beer
418 K VA S N Y P RU M . roč. 56 / 2010 – číslo 11–12 Možnosti využití moderních metod přípravy vzorků pro plynově chromatografické analýzy při analýze … Možnosti využití moderních metod přípravy vzorků pro plynově chromatografické analýzy…
Key words
kyselina, kyselinasbse, sbsespme, spmeacid, acidfatty, fattyacids, acidsmastných, mastnýchmožnosti, možnostiplynově, plynověkyselin, kyselinpřípravy, přípravymoderních, moderníchchain, chainkřivka, křivkavyužití
DETERMINATION OF THE FATTY ACIDS IN BEER BY SPME
DETERMINATION OF THE FATTY ACIDS IN BEER BY SPME
2005|Thermo Fisher Scientific|Scientific articles
374 KVASNÝ PRŮMYSL roč. 51 / 2005 – číslo 11–12 STANOVENÍ MASTNÝCH KYSELIN V PIVU TECHNIKOU SPME DETERMINATION OF THE FATTY ACIDS IN BEER BY SPME TOMÁŠ HORÁK, JIŘÍ ČULÍK, MARIE JURKOVÁ, PAVEL ČEJKA, VLADIMÍR KELLNER, Výzkumný ústav pivovarský a…
Key words
fatty, fattymastných, mastnýchkyselin, kyselinacids, acidsvolných, volnýchfree, freekyseliny, kyselinykvasný, kvasnýbeer, beerprůmysl, průmyslspme, spmeodezva, odezvacelková, celkovámastné, mastnéstandardu
Other projects
LCMS
ICPMS
Follow us
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike