APPLICATION OF SOME MODERN SAMPLE PREPARATION PROCEDURES FOR QUANTITATIVE DETERMINATION OF VICINAL DIKETONES IN BEER
Scientific articles | 2009 | Kvasny PrumyslInstrumentation
Vicinal diketones, particularly diacetyl (2,3-butanedione) and 2,3-pentanedione, are key off-flavour compounds in beer. Concentrations above sensory thresholds (0.05–0.10 mg/L for diacetyl; ≈1 mg/L for pentanedione) lead to undesirable buttery or honey-like aromas. Accurate quantification is essential for quality control in brewing to ensure consistent product flavour.
This work evaluates and optimizes stir bar sorptive extraction (SBSE) for quantitative determination of vicinal diketones in beer. Analytical performance is compared with solid phase microextraction (SPME), and detection is carried out by gas chromatography with electron capture detection (GC-ECD).
SBSE with solvent back-extraction offers a low-cost, simple alternative to SPME and classical steam-distillation methods when analyte concentrations exceed 0.100 mg/L. It avoids sample heating, reducing artefact formation, and is suitable for routine brewery quality control.
Advances may include automated SBSE systems, direct thermal desorption to GC–MS for enhanced selectivity, and extension of SBSE to other beer flavour compounds. Development of in-line monitoring and miniaturized extraction would support real-time process control.
The optimized SBSE protocol enables reliable quantification of diacetyl and 2,3-pentanedione in beer with straightforward handling and satisfactory precision at moderate concentration levels. SPME remains preferred for trace-level detection.
GC, SPME
IndustriesFood & Agriculture
ManufacturerThermo Fisher Scientific
Summary
Significance of the Topic
Vicinal diketones, particularly diacetyl (2,3-butanedione) and 2,3-pentanedione, are key off-flavour compounds in beer. Concentrations above sensory thresholds (0.05–0.10 mg/L for diacetyl; ≈1 mg/L for pentanedione) lead to undesirable buttery or honey-like aromas. Accurate quantification is essential for quality control in brewing to ensure consistent product flavour.
Objectives and Study Overview
This work evaluates and optimizes stir bar sorptive extraction (SBSE) for quantitative determination of vicinal diketones in beer. Analytical performance is compared with solid phase microextraction (SPME), and detection is carried out by gas chromatography with electron capture detection (GC-ECD).
Methodology and Instrumentation
- Sample Preparation (SBSE): 10 mL beer or 5 % V/V ethanol model spiked with 2,3-hexanedione (40 µg/L), 2 g NaCl, stirred with a 10 mm×0.5 mm PDMS Twister at 800 rpm, room temperature, 20 min. Back-extraction in 200 µL hexane for 20 min.
- Sample Preparation (SPME): Headspace extraction from 3 mL sample with 1.5 g NaCl using CAR/DVB 65 µm fiber, 30 min at room temperature; thermal desorption in GC inlet.
- Chromatography: DB-624 column (60 m×0.32 mm i.d.×1.8 µm); oven 75 °C (10 min)→120 °C at 5 °C/min (1 min); splitless injector 220 °C; ECD at 180 °C; He carrier (150 kPa at 75 °C), N₂ make-up.
Main Results and Discussion
- Detector Temperature: Optimum ECD temperature was 180 °C, balancing sensitivity and electrode cleanliness.
- Salting-Out Effect: Addition of 2 g NaCl per 10 mL sample provided ~3.5-fold signal enhancement; increasing to 4 g gave minor gains (~2 %).
- Extraction Kinetics: SBSE equilibrated by 20 min; extending to 40 min improved total response by only 4 %. Back-extraction was complete within 20 min.
- Calibration: Quadratic calibration yielded correlation coefficients >0.997 for both analytes; SBSE linear range for diacetyl was 0.100–0.400 mg/L; SPME extended to lower levels.
- Repeatability: SBSE RSD of peak-area ratio was 20 % for diacetyl and 5.6 % for pentanedione; SPME achieved RSD ≤7 % for both.
- Robustness: Varying ethanol content (0–8 % V/V) produced RSD <5.1 % (SBSE) and <3.9 % (SPME) for response ratios.
Benefits and Practical Applications of the Method
SBSE with solvent back-extraction offers a low-cost, simple alternative to SPME and classical steam-distillation methods when analyte concentrations exceed 0.100 mg/L. It avoids sample heating, reducing artefact formation, and is suitable for routine brewery quality control.
Future Trends and Opportunities
Advances may include automated SBSE systems, direct thermal desorption to GC–MS for enhanced selectivity, and extension of SBSE to other beer flavour compounds. Development of in-line monitoring and miniaturized extraction would support real-time process control.
Conclusion
The optimized SBSE protocol enables reliable quantification of diacetyl and 2,3-pentanedione in beer with straightforward handling and satisfactory precision at moderate concentration levels. SPME remains preferred for trace-level detection.
Instrumentation
- Twister PDMS (10 mm×0.5 mm) – Gerstel
- SPME fiber CAR/DVB 65 µm – Supelco
- Gas Chromatographs: CP-9001 (Chrompack), HRGC 5300 Mega (Carlo Erba)
- Autosampler ASG 40 – Labio
References
- Stewart, G.: Fermentation-yesterday, today and tomorrow. Tech. Q. Master Brew. Assoc. Am. 14, 1977, 1–15
- Fix, G.: Diacetyl: Formation, reduction and control. Brew. Tech. 1(2), 1993
- Linko, M. et al.: Recent advances in the malting and brewing industry. J. Biotechnol. 65, 1998, 85–98
- Sigsgaard, P.: Breeding of new brewer’s yeast. Cerevisia Biotechnol. 19, 1994, 29–32
- Wainwright, R.: Diacetyl – a review, Part I & II. J. Inst. Brew. 79, 1973, 451–470
- Shimwell, J. L.: New light on ‘Sarcina’ question. J. Inst. Brew. 45, 1939, 137–145
- Boulton, C., Quain, D.: Biochemistry of fermentation – vicinal diketones. In Brewing Yeast and Fermentation. Blackwell, 2001, 128–137
- Hansen, J., Kielland-Brandt, M.: Modification of biochemical pathways in industrial yeast. J. Biotechnol. 49, 1996, 1–12
- Gjertsen, P. et al.: Diacetyl im Bier. Monatsschr. Brauerei 17, 1964, 232–234
- Esser, K. D., Kremkow, C.: Bestimmung des Diacetylgehalts im Bier. Monatsschr. Brauerei 23, 1970, 11–14
- Zürcher, Ch., Gruss, R.: Vergleich von gaschromatographischer und spektrophotometrischer VDK-Bestimmung. Monatsschr. Brauerei 30, 1977, 13–15
- Morrison, N. M., Bendiak, D. S.: Today’s diacetyl: the total vicinal diketone profile of beer. Tech. Q. Master Brew. Assoc. Am. 24, 1987, 14–20
- Hodge, J. E.: Origins of flavors in foods. Symposium on Foods. AVI, 1967, 465–491
- Engan, S.: Off-flavours in beer. Brauwelt Int. III/1991, 217–223
- Montville, T. J. et al.: Ion-exchange HPLC with UV detection for acetoin and diacetyl. J. Microbiol. Methods 7, 1987, 1–8
- Baumann, R. A. et al.: Detection of diacetyl in LC using phosphorescence. Anal. Chem. 57, 1985, 1815–1818
- Matsuura, H. et al.: Determination of vicinal diketones in foods by HPLC. Bunseki Kagaku 39, 1990, 405–409
- Moree-Testa, P., Saint-Jalm, Y.: Determination of α-dicarboxyl compounds in cigarette smoke. J. Chromatogr. 217, 1981, 197–208
- Verhagen, L. C. et al.: Analysis of vicinal diketones in beer by HPLC. Proc. Congr. Eur. Conv. 21, 1987, 615–622
- Yamaguchi, M. et al.: Determination of glyoxal, methylglyoxal, diacetyl and 2,3-pentandione by HPLC with fluorescence detection. J. Liq. Chromatogr. 17, 1994, 203–211
- Damiani, P., Burini, G.: Determination of diacetyl in butter by fluorometric HPLC. J. Assoc. Off. Anal. Chem. 71, 1988, 462–465
- McCarthy, L. S.: Analysis of diacetyl and pentanedione in beer by HPLC-fluorometric detection. J. Am. Soc. Brew. Chem. 53, 1995, 178–181
- Pejin, J. D. et al.: GC/MS with SPE for diacetyl and pentanedione in beer. APTEFF 33, 2002, 45–54
- Pejin, J. et al.: GC/MS-SPE for vicinal diketone quantification during fermentation. J. Am. Soc. Brew. Chem. 64, 2006, 52–60
- Ulbert, F.: Headspace GC estimation of yogurt volatiles. J. Assoc. Off. Anal. Chem. 74, 1991, 630–634
- Buckee, G. K., Mundy, A. P.: Determination of vicinal diketones in beer by GC-HS. J. Inst. Brew. 100, 1994, 247–253
- Hardwick, B. C.: Selective measurement of acetohydroxy acid precursors by aniline decarboxylation. J. Am. Soc. Brew. Chem. 52, 1994, 106–110
- Lee, S. M., Drucker, D. B.: Analysis of acetoin and diacetyl in bacterial cultures by GLC. J. Clin. Microbiol. 2, 1975, 162–164
- Čulík, J. et al.: Optimal conditions for GC-HS determination of vicinal diketones. Poster, Bratislava, 1998
- Pawliszyn, J.: Solid phase microextraction with thermal desorption. Anal. Chem. 62, 1990, 2145–2148
- Horák, T. et al.: SPME determination of vicinal diketones in beer. Kvasny Prum. 47, 2001, 316–321
- Baltussen, E. et al.: Theory and principles of SBSE. J. Microcolumn Sep. 11, 1999, 737–747
- Sandra, P. et al.: SBSE: a novel extraction technique. Gerstel AppNote 1/2000
- Horák, T. et al.: SBSE analysis of ester and fatty acids in beer by GC. Kvasny Prum. 54, 2008, 102–107
- Horák, T. et al.: Free medium-chain fatty acids in beer by SBSE. J. Chromatogr. A 1196–1197, 2008, 96–99
- Harms, D. et al.: SBSE-HPLC analysis of bitter acids in beer and wort. Gerstel AppNote 5/2001
- Beltran, J. et al.: SPME quantitative analysis of organophosphorus pesticides in water. J. Chromatogr. A, 808, 1998, 257–263
Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.
Similar PDF
Possibilities of Utilization of Modern Sample Preparation Methods for Gas Chromatographic Analysis of Beverages and Especially beer. Part I. – Literature Review
2010||Scientific articles
358 K VA S N Y P RU M . roč. 56 / 2010 – číslo 9 Možnosti využití moderních metod přípravy vzorků pro plynově chromatografické analýzy při analýze nápojů … Možnosti využití moderních metod přípravy vzorků pro plynově chromatografické…
Key words
pivo, pivobeer, beerdetektor, detektorvzorek, vzorekanalyty, analytydms, dmsvíno, vínoextrakce, extrakceecd, ecdliteratura, literaturafid, fidmicroextraction, microextractionaplikace, aplikacevzorků, vzorkůspme
Possibilities of Utilization of Modern Sample Preparation Methods for Gas Chromatographic Analysis of Beverages and especially Beer. Part II. – Stir Bar Sorptive Extraction
2010|GERSTEL|Scientific articles
KP10_390_395 10/18/10 12:52 PM Stránka 390 390 K VA S N Y P RU M . roč. 56 / 2010 – číslo 10 Možnosti využití moderních metod přípravy vzorků pro plynově chromatografické analýzy při analýze … Možnosti využití moderních metod…
Key words
sorptive, sorptivepdms, pdmsplynově, plynověmoderních, moderníchstir, stirpro, provyužití, využitípřípravy, přípravytyčince, tyčincesbse, sbsemíchací, míchacímožnosti, možnostianalýze, analýzebar, barpři
Possibilities of Utilization of Modern Sample Preparation Methods for Gas Chromatographic Analyses in Beverage and Namely Brewing Analytics. Part III. – Solid-Phase Microextraction and Stir Bar Sorptive Extraction in Fatty Acids Analysis in Beer
2010|GERSTEL|Scientific articles
418 K VA S N Y P RU M . roč. 56 / 2010 – číslo 11–12 Možnosti využití moderních metod přípravy vzorků pro plynově chromatografické analýzy při analýze … Možnosti využití moderních metod přípravy vzorků pro plynově chromatografické analýzy…
Key words
kyselina, kyselinasbse, sbsespme, spmeacid, acidfatty, fattyacids, acidsmastných, mastnýchmožnosti, možnostiplynově, plynověkyselin, kyselinpřípravy, přípravymoderních, moderníchchain, chainkřivka, křivkavyužití
DETERMINATION OF THE FATTY ACIDS IN BEER BY SPME
2005|Thermo Fisher Scientific|Scientific articles
374 KVASNÝ PRŮMYSL roč. 51 / 2005 – číslo 11–12 STANOVENÍ MASTNÝCH KYSELIN V PIVU TECHNIKOU SPME DETERMINATION OF THE FATTY ACIDS IN BEER BY SPME TOMÁŠ HORÁK, JIŘÍ ČULÍK, MARIE JURKOVÁ, PAVEL ČEJKA, VLADIMÍR KELLNER, Výzkumný ústav pivovarský a…
Key words
fatty, fattymastných, mastnýchkyselin, kyselinacids, acidsvolných, volnýchfree, freekyseliny, kyselinykvasný, kvasnýbeer, beerprůmysl, průmyslspme, spmeodezva, odezvacelková, celkovámastné, mastnéstandardu