Monitoring of Acrylamide Content in Selected Foods
Scientific articles | 2015 | Kvasny PrumyslInstrumentation
The formation of acrylamide during high-temperature processing of starchy foods poses significant health concerns due to its probable carcinogenic and neurotoxic effects. Monitoring levels in common food products is critical for consumer safety and regulatory guidance.
This study aimed to quantify acrylamide in 41 samples from seven food categories using GC/MSD after bromine derivatization. The target groups included potato crisps, coffee, bread, biscuits, crackers, pre-fried and fried potato chips, reflecting typical consumer choices.
Ground samples were spiked with 13C3-acrylamide internal standard and extracted with water, followed by bromination at pH 0–1. Derivatized acrylamide was extracted into ethyl acetate, neutralized with triethylamine, and analyzed by GC/MSD in SIM mode targeting m/z 149,151 for analyte and m/z 152,154 for the internal standard. The calibration curve was linear from 75 to 1550 μg/kg (r2=0.9998), with an LOQ of 25 μg/kg.
Acrylamide levels varied by product group:
The study provides updated benchmark data for acrylamide in key food matrices, supporting risk assessment and quality control in food production. The derivatization-GC/MSD method offers reliable sensitivity and specificity for routine monitoring.
Further research may focus on advanced low-temperature processing, process additives (e.g., asparaginase), and high-resolution mass spectrometry for even lower detection limits. Implementation of mitigation strategies across the supply chain can reduce consumer exposure.
The GC/MSD method with bromine derivatization reliably quantified acrylamide in diverse foods, highlighting the influence of processing on contaminant levels. Continued surveillance and application of reduction technologies are essential for food safety.
GC/MSD, GC/SQ
IndustriesFood & Agriculture
ManufacturerThermo Fisher Scientific
Summary
Significance of the Topic
The formation of acrylamide during high-temperature processing of starchy foods poses significant health concerns due to its probable carcinogenic and neurotoxic effects. Monitoring levels in common food products is critical for consumer safety and regulatory guidance.
Objectives and Study Overview
This study aimed to quantify acrylamide in 41 samples from seven food categories using GC/MSD after bromine derivatization. The target groups included potato crisps, coffee, bread, biscuits, crackers, pre-fried and fried potato chips, reflecting typical consumer choices.
Used Instrumentation
- Gas chromatograph Trace GC Ultra Finnigan
- Mass selective detector Trace DSQ Thermo Finnigan
- DB-WAX capillary column (30 m×0.25 mm×0.25 μm)
- Helium carrier gas
Methodology
Ground samples were spiked with 13C3-acrylamide internal standard and extracted with water, followed by bromination at pH 0–1. Derivatized acrylamide was extracted into ethyl acetate, neutralized with triethylamine, and analyzed by GC/MSD in SIM mode targeting m/z 149,151 for analyte and m/z 152,154 for the internal standard. The calibration curve was linear from 75 to 1550 μg/kg (r2=0.9998), with an LOQ of 25 μg/kg.
Main Results and Discussion
Acrylamide levels varied by product group:
- Potato crisps: 160–1530 μg/kg (mean 836 μg/kg)
- Ground coffee: <25–358 μg/kg (mean 307 μg/kg); none in instant coffee
- Bread: <25–125 μg/kg (mean 102 μg/kg)
- Biscuits: 100–259 μg/kg (mean 206 μg/kg)
- Crackers: 118–470 μg/kg (mean 333 μg/kg)
- Pre-fried potato chips: 66–137 μg/kg (mean 99 μg/kg)
- Fried potato chips: 1582–1588 μg/kg (mean 1586 μg/kg)
Benefits and Practical Applications
The study provides updated benchmark data for acrylamide in key food matrices, supporting risk assessment and quality control in food production. The derivatization-GC/MSD method offers reliable sensitivity and specificity for routine monitoring.
Future Trends and Applications
Further research may focus on advanced low-temperature processing, process additives (e.g., asparaginase), and high-resolution mass spectrometry for even lower detection limits. Implementation of mitigation strategies across the supply chain can reduce consumer exposure.
Conclusion
The GC/MSD method with bromine derivatization reliably quantified acrylamide in diverse foods, highlighting the influence of processing on contaminant levels. Continued surveillance and application of reduction technologies are essential for food safety.
References
- Ciesarová Z., Kukurová K., Bednáriková A., Morales F. J., 2009: Effect of heat treatment and dough formulation on the formation of Maillard reaction products in fine bakery products – benefits and weak points. J. Food Nutr. Res., 48(1): 20–30.
- Dunovská L., Hajšlová J., Poustka J., Čajka T., 2003: Akrylamid v potravinách. Sborník sdělení XXXIV. Symposium o nových směrech výroby a hodnocení potravin. Skalský Dvůr, May 26–28: 331–334.
- Eriksson N. S., 2005: Acrylamide in food products: Identification, formation and analytical technology. Ph.D. Thesis, Stockholm University.
- Friedman M., 2003: Chemistry, biochemistry, and safety of acrylamide. J. Agric. Food Chem., 51(16): 4504–4526.
- Granby K., Nielsen N. J., Hedegaard R. V., Christensen T., Kån M., Skibsted L. H., 2008: Acrylamide–asparagine relationship in baked/toasted wheat and rye breads. Food Addit. Contam., 25(8): 921–929.
- Konings E. J. M., Ashby P., Hamlet C. G., Thompson G. A. K., 2007: Acrylamide in cereal and cereal products: A review on progress in level reduction. Food Addit. Contam., 24(S1): 47–59.
- Mikulíková R., Sobotová K., 2007: Determination of acrylamide in malt with GC/MS. Acta Chim. Slov., 54: 98–101.
- Peterson E. V., 2009: Analysis of Acrylamide and Anthocyanins in Food, Extraction Optimization for Challenging Analytes. Acta Univ. Upsaliensis Dissertation.
- Sanny M., Luning P. A., Jinap S., Bakker E. J., Van Boekel M. A. J. S., 2013: Effect of frying instructions for food handlers on acrylamide concentration in french fries: An explorative study. J. Food Prot., 76(3): 462–472.
- Taeymans D., Wood J., Ashby P., et al., 2004: A Review of Acrylamide: An Industry Perspective on Research, Analysis, Formation, and Control. Crit. Rev. Food Sci. Nutr., 44(5): 323–347.
- Velíšek J., Hajšlová J., 2009: Chemie potravin. OSSIS, Tábor, 411–416.
Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.
Similar PDF
3-MCPD Process Contaminant in Malt
2018|Thermo Fisher Scientific|Scientific articles
6 Kvasny Prum. 64 / 2018 (1) 3-MCPD Process Contaminant in Malt DOI: 10.18832/kp201802 3-MCPD Process Contaminant in Malt Procesní kontaminant 3-MCPD ve sladu Renata MIKULÍKOVÁ, Zdeněk SVOBODA, Karolína BENEŠOVÁ, Sylvie BĚLÁKOVÁ RIBM Plc, Malting Institute, Mostecká 7, CZ 614…
Key words
malt, maltbread, breadpale, palešunka, šunkapotravina, potravinachloropropanols, chloropropanolsvrstva, vrstvaham, hamfinnigan, finnigansmoked, smokedale, alebyly, bylyobsah, obsahheptafluorobutyrylimidazolem, heptafluorobutyrylimidazoleminconventional
Determination of Trans-2-Nonenal in Barley Grain, Malt and Beer
2010|Thermo Fisher Scientific|Scientific articles
428 K VA S N Y P RU M . roč. 56 / 2010 – číslo 11–12 Stanovení obsahu trans-2-nonenalu v zrnu ječmene, sladu a pivu Stanovení obsahu trans-2-nonenalu v zrnu ječmene, sladu a pivu Determination of Trans-2-Nonenal in Barley…
Key words
spme, spmepivo, pivobarley, barleymalt, maltextraction, extractionslad, sladječmen, ječmenječmene, ječmeneenzymy, enzymypale, palefid, fidvzorek, vzorekmetodou, metodoubyla, bylavzorků
Analysis of Essential Oils Usable for Fortification of Food Products
2016|Thermo Fisher Scientific|Scientific articles
Kvasny Prum. 62 / 2016 5 Analýza rostlinných silic využitelných pro fortifikaci potravinářských výrobků 157 DOI: 10.18832/kp2016021 Analýza rostlinných silic využitelných pro fortifikaci potravinářských výrobků Analysis of Essential Oils Usable for Fortification of Food Products Zdeněk SVOBODA1, Renata MIKULÍKOVÁ1, Helena…
Key words
silic, silicessential, essentialoils, oilsfortifikaci, fortifikacivyužitelných, využitelnýchpotravinářských, potravinářskýchvýrobků, výrobkůrostlinných, rostlinnýchlavender, lavenderpyrofosfát, pyrofosfátsilicích, silicíchpro, prostation, stationanalýza, analýzaobchodní
DETERMINATION OF LIPID CONTENT AND FATTY ACID REPRESENTATION IN BARLEY CARYOPSES AND MALT
2009|Thermo Fisher Scientific|Scientific articles
KVASNÝ PRŮMYSL roč. 55 / 2009 – číslo 11–12 315 STANOVENÍ OBSAHU LIPIDŮ A ZASTOUPENÍ MASTNÝCH KYSELIN V OBILKÁCH JEČMENE A VE SLADU DETERMINATION OF LIPID CONTENT AND FATTY ACID REPRESENTATION IN BARLEY CARYOPSES AND MALT ZDENĚK SVOBODA1, RENATA MIKULÍKOVÁ1,…
Key words
barley, barleyječmene, ječmenesladu, sladumalt, maltobilce, obilcekvasný, kvasnýprůmysl, průmyslkyselin, kyselinlipidů, lipidůcaryopses, caryopseszastoupení, zastoupenímastných, mastnýchcontent, contentextrakce, extrakceobsahu