Determination of Trans-2-Nonenal in Barley Grain, Malt and Beer
Scientific articles | 2010 | Kvasny PrumyslInstrumentation
trans-2-Nonenal is a key aldehyde responsible for rancid butter flavor in stored beer, impacting sensory quality and consumer acceptance. Reliable quantification of this compound in brewing raw materials and final products is crucial for quality control and shelf-life assessment.
HS-SPME parameters were optimized using a 10 µg standard in water: 100 µm PDMS, 65 µm PDMS/DVB, 85 µm CAR/PDMS, 50/30 µm DVB/CAR/PDMS and 85 µm PA fibers were tested. Extraction was performed at 60 °C for 20 minutes with 1.5 g NaCl, followed by GC-MS identification and automated GC-FID quantification.
The automated HS-SPME-GC-FID method offers rapid, sensitive, and reproducible quantification of trans-2-nonenal, supporting quality assurance in brewing, raw material screening, and storage stability monitoring.
The validated method using PDMS/DVB fiber provides a robust analytical tool for monitoring trans-2-nonenal in barley, malt, and beer, enabling effective sensory quality control and shelf-life studies.
GC, SPME
IndustriesFood & Agriculture
ManufacturerThermo Fisher Scientific, CTC Analytics
Summary
Significance of the Topic
trans-2-Nonenal is a key aldehyde responsible for rancid butter flavor in stored beer, impacting sensory quality and consumer acceptance. Reliable quantification of this compound in brewing raw materials and final products is crucial for quality control and shelf-life assessment.
Objectives and Study Overview
- Optimize and implement an automated headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography (GC) method for trans-2-nonenal determination in barley, malt, and beer.
- Evaluate five SPME fiber coatings to identify the most efficient extraction phase.
Methodology and Instrumentation
HS-SPME parameters were optimized using a 10 µg standard in water: 100 µm PDMS, 65 µm PDMS/DVB, 85 µm CAR/PDMS, 50/30 µm DVB/CAR/PDMS and 85 µm PA fibers were tested. Extraction was performed at 60 °C for 20 minutes with 1.5 g NaCl, followed by GC-MS identification and automated GC-FID quantification.
Used Instrumentation
- Gas chromatograph Thermo Scientific Trace GC Ultra with FID and MS detectors
- Supelcowax capillary column (30 m × 0.25 mm, 0.25 µm)
- Automated sampler CombiPal (CTC Analytics)
- Laboratory mill, cooled centrifuge, shaker
Main Results and Discussion
- The PDMS/DVB fiber achieved the highest extraction efficiency for trans-2-nonenal.
- Calibration was linear from 0.03 to 3.4 µg L⁻¹ (r = 0.9998); LOD and LOQ for beer were 5 × 10⁻³ and 15 × 10⁻³ µg L⁻¹, respectively.
- Trans-2-nonenal levels in barley ranged 0.28–3.06 µg kg⁻¹; in malt 8.90–38.54 µg kg⁻¹; in beers 1.01–3.44 µg L⁻¹ in dispensed beer, 1.06–4.02 µg L⁻¹ in pale lager, and 3.39–20.28 µg L⁻¹ in nonalcoholic beer.
Practical Benefits and Applications
The automated HS-SPME-GC-FID method offers rapid, sensitive, and reproducible quantification of trans-2-nonenal, supporting quality assurance in brewing, raw material screening, and storage stability monitoring.
Future Trends and Opportunities
- Integration with high-resolution and tandem mass spectrometry for enhanced selectivity.
- Development of on-fiber derivatization techniques to improve detection limits.
- Automation and miniaturization for high-throughput screening in industrial settings.
Conclusion
The validated method using PDMS/DVB fiber provides a robust analytical tool for monitoring trans-2-nonenal in barley, malt, and beer, enabling effective sensory quality control and shelf-life studies.
Reference
- Angelo St. A.J., Ory L.R.: Lipid Degradation During Seed Deterioration, Symposium: Deterioration Mechanisms in Seeds, Southern Regional Research Center, ARS, US Department of Agriculture, 1983.
- Velíšek J.: Chemie potravin 1, Ossis, Tábor, 2002, 117–161.
- Drost B.W., Van Berg R., Freijee F.J.M., Van Velde E.G., Hollemans M.: Flavor stability. J. Am. Soc. Brew. Chem. 48, 1990, 124–131.
- Kobayashi N., Kenada H., Kano Y., Koshino S.: Determination of wort production, Proceedings of 24th Congress of the European Brewery Convention, Oslo, 1993, 405–412.
- Svoboda Z., Mikulíková R., Běláková S., Benešová K., Nesvadba Z.: Stanovení obsahu lipidů a zastoupení mastných kyselin v obilkách ječmene a ve sladu, Kvasny Prum. 55, 2009, 315–320.
- Basařová G., Šavel J., Basař P., Lejsek T.: Pivovarství. VŠCHT, Praha, 2010, ISBN 978-80-7080-734-7.
- Skadhauge B., Knudsen S., Lok F., Olsen O.: Barley for production of flavour-stable beer, Proceedings of 30th Congress of the European Brewery Convention, Prague, 2005, 676–678.
- Scherer R., Wagner R., Hoffmann Kowalski C., Teixeira Godoy H.: (E)-2-Nonenal determination in Brazilian beers using headspace solid-phase microextraction and gas chromatographic coupled mass spectrometry (HS-SPME-GC-MS), Ciênc. Tecnol. Aliment. 30, supl.1, Campinas, 2010, 161–165.
- Veselý P. et al.: Analysis of aldehydes in beer using solid-phase microextraction with on-fiber derivatization and gas chromatography/mass spectrometry. J. Agric. Food Chem. 51, 2003, 6941–6944.
Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.
Similar PDF
DETERMINATION OF LIPID CONTENT AND FATTY ACID REPRESENTATION IN BARLEY CARYOPSES AND MALT
2009|Thermo Fisher Scientific|Scientific articles
KVASNÝ PRŮMYSL roč. 55 / 2009 – číslo 11–12 315 STANOVENÍ OBSAHU LIPIDŮ A ZASTOUPENÍ MASTNÝCH KYSELIN V OBILKÁCH JEČMENE A VE SLADU DETERMINATION OF LIPID CONTENT AND FATTY ACID REPRESENTATION IN BARLEY CARYOPSES AND MALT ZDENĚK SVOBODA1, RENATA MIKULÍKOVÁ1,…
Key words
barley, barleyječmene, ječmenesladu, sladuobilce, obilcemalt, maltkvasný, kvasnýprůmysl, průmyslkyselin, kyselinlipidů, lipidůcaryopses, caryopseszastoupení, zastoupenímastných, mastnýchcontent, contentextrakce, extrakceobsahu
DETERMINATION OF METHIONINE IN MALT
2009|Thermo Fisher Scientific|Scientific articles
310 KVASNÝ PRŮMYSL roč. 55 / 2009 – číslo 11–12 STANOVENÍ METHIONINU VE SLADU DETERMINATION OF METHIONINE IN MALT RENATA MIKULÍKOVÁ, ZDENĚK SVOBODA, KAROLÍNA BENEŠOVÁ, SYLVIE BĚLÁKOVÁ Výzkumný ústav pivovarský a sladařský, Sladařský ústav, Mostecká 7, CZ-614 00 Brno Research…
Key words
methioninu, methioninumethionine, methioninesladu, sladukvasný, kvasnýprůmysl, průmyslmalt, maltbojos, bojosbyla, bylasirných, sirnýchvoda, vodamalts, maltsdimethyl, dimethylbrani, branihrubèice, hrubèicehrubčice
Possibilities of Utilization of Modern Sample Preparation Methods for Gas Chromatographic Analysis of Beverages and Especially beer. Part I. – Literature Review
2010||Scientific articles
358 K VA S N Y P RU M . roč. 56 / 2010 – číslo 9 Možnosti využití moderních metod přípravy vzorků pro plynově chromatografické analýzy při analýze nápojů … Možnosti využití moderních metod přípravy vzorků pro plynově chromatografické…
Key words
pivo, pivobeer, beerdetektor, detektorvzorek, vzorekanalyty, analytydms, dmsvíno, vínoextrakce, extrakceecd, ecdliteratura, literaturafid, fidmicroextraction, microextractionaplikace, aplikacevzorků, vzorkůtěkavé
Use of Modern Analytical SPDE and TDAS Methods for the Analysis of Sulphur Volatile Flavors
2011|Thermo Fisher Scientific|Scientific articles
Využití moderních analytických metod SPDE a TDAS při stanovení sirných těkavých látek K VA S N Y P RU M . 57 / 2011 (7–8) 231 Využití moderních analytických metod SPDE a TDAS při stanovení sirných těkavých látek Use of…
Key words
sirných, sirnýchspde, spdetdas, tdaslátek, látektěkavých, těkavýchstanovení, stanovenímoderních, moderníchsulphur, sulphurpři, přivyužití, využitímetod, metodbyly, bylyautomatizované, automatizovanéanalytických, analytickýchdesorpci