GCMS
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike
Author
DataApex
DataApex
Since 1991 DataApex develops and manufactures chromatography data stations. DataApex is constantly striving to provide users with efficient and up-to-date tools for chromatography data processing.
Tags
Article
Software
Academy
Video
LinkedIn Logo

Determining biodiesel composition according to ISO 14103

Tu, 1.7.2025
| Original article from: DataApex
This whitepaper explains how to calculate the content of fatty acid methyl esters (FAME) and the linoleic acid methyl ester in biodiesel fuel according to ISO 14103 in Clarity.
Video placeholder
  • Photo: DataApex: Determining biodiesel composition according to ISO 14103
  • Video: DataApex: Clarity - What's new in 10.1

Calculation of biodiesel composition can be done directly in Clarity

This whitepaper explains how to calculate the content of fatty acid methyl esters (FAME) and the linoleic acid methyl ester in biodiesel fuel according to ISO 14103 in Clarity. As stated in the norm, the content of FAME in biodiesel is greater than 90 % (m/m), while the content of the linoleic acid methyl ester is between 1 % and 15 % (m/m). The methyl esters in FAME should be between C14 and C24.

Principle

The determination of the content of FAME employs internal calibration (ISTD – methyl heptadecanoate). The ester content in m/m percent is calculated as:

DataApex: Determining biodiesel composition according to ISO 14103.DataApex: Determining biodiesel composition according to ISO 14103.

where 𝐶 is the ester content, 𝐴 is the total peak area of the methyl esters from C14 to C24, 𝐴ISTD is the peak area of the ISTD compound, 𝐶ISTD is the concentration of ISTD (in mg/ml), 𝑉ISTD is the volume of ISTD (in ml), 𝑚ISTD is the mass of ISTD (in mg), and 𝑚 is the mass of the sample (including ISTD mass; in mg).

The linoleic acid methyl ester content in m/m percent is given as:

DataApex: Determining biodiesel composition according to ISO 14103.DataApex: Determining biodiesel composition according to ISO 14103.

where 𝐿 is the linoleic acid methyl ester content, ∑𝐴 is the total peak area of the methyl esters from C14 to C24, 𝐴ISTD is the peak area of ISTD, and 𝐴𝐿 is the peak area corresponding to the linoleic acid methyl ester.

Preparing chromatogram and calibration

After measuring your sample, open your chromatogram in Clarity. Group the FAME peaks using the Peak Groups… function (menu Chromatogram – Peak). In the Groups dialog, set an ID, click Add, and select the corresponding peaks. In the example chromatogram (download link below), Group A (FAME) does not contain the ISTD peak – this simplifies the subsequent calculations.

Create a new calibration and open the sample chromatogram as a standard. In the Calibration Options, change the Display Mode to ISTD and Mode to Recalibrate. Use the Add Peak function to add the ISTD (methyl heptadecanoate) peak and linoleic acid peak to the calibration. In the Amount column, write the known ISTD amount. To add the group of FAME peaks, use the Add Group function. Then, on the linoleic acid and FAME compound tabs, set the Calculate By option to the ISTD compound name. Save the calibration and link it to the sample chromatogram. To improve clarity, in the Common for All Signals pane, select the All Identified Peaks option in the Report in Result Table section.

Procedure for calculation of FAME content

The desired results can be calculated directly in Clarity using the User Columns: right click anywhere in the Result Table pane in the Results tab of the Chromatogram window and select User Columns – Add… in the context menu. In the Add User Column dialog, fill in the Title and Units (e.g. FAME in %) and uncheck the Calculate Total checkbox. The following expression can be used to calculate the FAME content, if the ISTD peak was not included in the FAME peak group:

([FAME$Area] / [ISTD$Area]) * ([ISTD1 Amount] / ([Sample Amount] + [ISTD1 Amount]))*100

If the ISTD peak was included in the FAME peak group, its area must be subtracted from the area of the FAME group:

(([FAME$Area] - [ISTD$Area]) / [ISTD$Area]) * ([ISTD1 Amount] / ([Sample Amount] + [ISTD1 Amount]))*100

Procedure for calculation of the linoleic acid methyl ester content

Calculation of linoleic acid methyl ester content is analogous to calculation of the FAME content. Add another user column, fil in the Title and Units (e.g., Linoleic Acid in %) and uncheck the Calculate Total checkbox. If the ISTD peak was not included in the FAME peak group, the following expression can be used:

[Linoleic acid$Area] / [FAME$Area]*100

Analogously, if the ISTD peak was included in the FAME group, it must be subtracted:

[Linoleic acid$Area] / ([FAME$Area] - [ISTD$Area])*100

Example of an evaluated chromatogram

Sample data for Clarity

DataApex
LinkedIn Logo
 

Related content

Analysis of Total Aromatic Content in Motor Gasoline by ASTM D5769 Using an Agilent 8850/5977C GC/MSD System

Applications
| 2025 | Agilent Technologies
Instrumentation
GC/MSD, GC/SQ
Manufacturer
Agilent Technologies
Industries
Energy & Chemicals

A Chemometric Approach for Ambient Air Monitoring Using Thermal Desorption GC/MS

Applications
| 2025 | Agilent Technologies
Instrumentation
Thermal desorption, GC/MSD, GC/SQ
Manufacturer
Agilent Technologies, Markes
Industries
Environmental

PFAS in Bottled Water: A Simple Approach Using HS-SPME GC/MS/MS for Volatile Contaminant Analysis

Posters
| 2025 | Shimadzu (ASMS)
Instrumentation
HeadSpace, SPME, GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Shimadzu
Industries
Environmental

Advancing PFAS Detection in Drinking Water: GC-MS as a Complementary Technique to LC-MS for Closing PFAS Mass Balance

Posters
| 2025 | Shimadzu (ASMS)
Instrumentation
SPME, GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Shimadzu
Industries
Environmental

Performance evaluation of GC-MS/MS for Dioxin analysis with amendments to EU Regulations 644/2017 and 771/2017 for food and feed

Posters
| 2025 | Thermo Fisher Scientific (ASMS)
Instrumentation
GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Thermo Fisher Scientific
Industries
Food & Agriculture
 

Related articles

Considerations when working with solid samples and SPE
Article | Academy

Considerations when working with solid samples and SPE

Solid phase extraction enables clean-up, pre-concentration, and solvent switching. Proper solvent choice and SPE mode are key for effective solid sample preparation.
Phenomenex
tag
share
more
EnviroMail™12/Europe: ALS Net Zero Commitments & Roadmap in Support of our Staff, Clients, Communities & Shareholders
Article | Environment

EnviroMail™12/Europe: ALS Net Zero Commitments & Roadmap in Support of our Staff, Clients, Communities & Shareholders

ALS is committed to climate action and sustainability, aiming for Net Zero by 2050. Through innovation and science, we strive to make a meaningful impact and share progress with clients.
ALS Czech Republic
tag
share
more
Investigating the impact of packaging on oat volatiles using GC×GC–TOF MS (Steve Smith, MDCW 2025)
Presentation | Video

Investigating the impact of packaging on oat volatiles using GC×GC–TOF MS (Steve Smith, MDCW 2025)

Using HSSE and GC×GC-TOF MS, we investigate volatile migration in packaged oats. Advanced profiling reveals how different packaging materials impact aroma, safety, and product differentiation.
The Multidimensional Chromatography Workshop
tag
share
more
New material enables chemical production using sunlight and water
Article | Science and research

New material enables chemical production using sunlight and water

Scientists developed a catalyst that uses sunlight and water to hydrogenate a wide range of organics with high yield and selectivity—no gas hydrogen or harsh conditions needed.
CATRIN
tag
share
more
 

Related content

Analysis of Total Aromatic Content in Motor Gasoline by ASTM D5769 Using an Agilent 8850/5977C GC/MSD System

Applications
| 2025 | Agilent Technologies
Instrumentation
GC/MSD, GC/SQ
Manufacturer
Agilent Technologies
Industries
Energy & Chemicals

A Chemometric Approach for Ambient Air Monitoring Using Thermal Desorption GC/MS

Applications
| 2025 | Agilent Technologies
Instrumentation
Thermal desorption, GC/MSD, GC/SQ
Manufacturer
Agilent Technologies, Markes
Industries
Environmental

PFAS in Bottled Water: A Simple Approach Using HS-SPME GC/MS/MS for Volatile Contaminant Analysis

Posters
| 2025 | Shimadzu (ASMS)
Instrumentation
HeadSpace, SPME, GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Shimadzu
Industries
Environmental

Advancing PFAS Detection in Drinking Water: GC-MS as a Complementary Technique to LC-MS for Closing PFAS Mass Balance

Posters
| 2025 | Shimadzu (ASMS)
Instrumentation
SPME, GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Shimadzu
Industries
Environmental

Performance evaluation of GC-MS/MS for Dioxin analysis with amendments to EU Regulations 644/2017 and 771/2017 for food and feed

Posters
| 2025 | Thermo Fisher Scientific (ASMS)
Instrumentation
GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Thermo Fisher Scientific
Industries
Food & Agriculture
 

Related articles

Considerations when working with solid samples and SPE
Article | Academy

Considerations when working with solid samples and SPE

Solid phase extraction enables clean-up, pre-concentration, and solvent switching. Proper solvent choice and SPE mode are key for effective solid sample preparation.
Phenomenex
tag
share
more
EnviroMail™12/Europe: ALS Net Zero Commitments & Roadmap in Support of our Staff, Clients, Communities & Shareholders
Article | Environment

EnviroMail™12/Europe: ALS Net Zero Commitments & Roadmap in Support of our Staff, Clients, Communities & Shareholders

ALS is committed to climate action and sustainability, aiming for Net Zero by 2050. Through innovation and science, we strive to make a meaningful impact and share progress with clients.
ALS Czech Republic
tag
share
more
Investigating the impact of packaging on oat volatiles using GC×GC–TOF MS (Steve Smith, MDCW 2025)
Presentation | Video

Investigating the impact of packaging on oat volatiles using GC×GC–TOF MS (Steve Smith, MDCW 2025)

Using HSSE and GC×GC-TOF MS, we investigate volatile migration in packaged oats. Advanced profiling reveals how different packaging materials impact aroma, safety, and product differentiation.
The Multidimensional Chromatography Workshop
tag
share
more
New material enables chemical production using sunlight and water
Article | Science and research

New material enables chemical production using sunlight and water

Scientists developed a catalyst that uses sunlight and water to hydrogenate a wide range of organics with high yield and selectivity—no gas hydrogen or harsh conditions needed.
CATRIN
tag
share
more
 

Related content

Analysis of Total Aromatic Content in Motor Gasoline by ASTM D5769 Using an Agilent 8850/5977C GC/MSD System

Applications
| 2025 | Agilent Technologies
Instrumentation
GC/MSD, GC/SQ
Manufacturer
Agilent Technologies
Industries
Energy & Chemicals

A Chemometric Approach for Ambient Air Monitoring Using Thermal Desorption GC/MS

Applications
| 2025 | Agilent Technologies
Instrumentation
Thermal desorption, GC/MSD, GC/SQ
Manufacturer
Agilent Technologies, Markes
Industries
Environmental

PFAS in Bottled Water: A Simple Approach Using HS-SPME GC/MS/MS for Volatile Contaminant Analysis

Posters
| 2025 | Shimadzu (ASMS)
Instrumentation
HeadSpace, SPME, GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Shimadzu
Industries
Environmental

Advancing PFAS Detection in Drinking Water: GC-MS as a Complementary Technique to LC-MS for Closing PFAS Mass Balance

Posters
| 2025 | Shimadzu (ASMS)
Instrumentation
SPME, GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Shimadzu
Industries
Environmental

Performance evaluation of GC-MS/MS for Dioxin analysis with amendments to EU Regulations 644/2017 and 771/2017 for food and feed

Posters
| 2025 | Thermo Fisher Scientific (ASMS)
Instrumentation
GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Thermo Fisher Scientific
Industries
Food & Agriculture
 

Related articles

Considerations when working with solid samples and SPE
Article | Academy

Considerations when working with solid samples and SPE

Solid phase extraction enables clean-up, pre-concentration, and solvent switching. Proper solvent choice and SPE mode are key for effective solid sample preparation.
Phenomenex
tag
share
more
EnviroMail™12/Europe: ALS Net Zero Commitments & Roadmap in Support of our Staff, Clients, Communities & Shareholders
Article | Environment

EnviroMail™12/Europe: ALS Net Zero Commitments & Roadmap in Support of our Staff, Clients, Communities & Shareholders

ALS is committed to climate action and sustainability, aiming for Net Zero by 2050. Through innovation and science, we strive to make a meaningful impact and share progress with clients.
ALS Czech Republic
tag
share
more
Investigating the impact of packaging on oat volatiles using GC×GC–TOF MS (Steve Smith, MDCW 2025)
Presentation | Video

Investigating the impact of packaging on oat volatiles using GC×GC–TOF MS (Steve Smith, MDCW 2025)

Using HSSE and GC×GC-TOF MS, we investigate volatile migration in packaged oats. Advanced profiling reveals how different packaging materials impact aroma, safety, and product differentiation.
The Multidimensional Chromatography Workshop
tag
share
more
New material enables chemical production using sunlight and water
Article | Science and research

New material enables chemical production using sunlight and water

Scientists developed a catalyst that uses sunlight and water to hydrogenate a wide range of organics with high yield and selectivity—no gas hydrogen or harsh conditions needed.
CATRIN
tag
share
more
 

Related content

Analysis of Total Aromatic Content in Motor Gasoline by ASTM D5769 Using an Agilent 8850/5977C GC/MSD System

Applications
| 2025 | Agilent Technologies
Instrumentation
GC/MSD, GC/SQ
Manufacturer
Agilent Technologies
Industries
Energy & Chemicals

A Chemometric Approach for Ambient Air Monitoring Using Thermal Desorption GC/MS

Applications
| 2025 | Agilent Technologies
Instrumentation
Thermal desorption, GC/MSD, GC/SQ
Manufacturer
Agilent Technologies, Markes
Industries
Environmental

PFAS in Bottled Water: A Simple Approach Using HS-SPME GC/MS/MS for Volatile Contaminant Analysis

Posters
| 2025 | Shimadzu (ASMS)
Instrumentation
HeadSpace, SPME, GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Shimadzu
Industries
Environmental

Advancing PFAS Detection in Drinking Water: GC-MS as a Complementary Technique to LC-MS for Closing PFAS Mass Balance

Posters
| 2025 | Shimadzu (ASMS)
Instrumentation
SPME, GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Shimadzu
Industries
Environmental

Performance evaluation of GC-MS/MS for Dioxin analysis with amendments to EU Regulations 644/2017 and 771/2017 for food and feed

Posters
| 2025 | Thermo Fisher Scientific (ASMS)
Instrumentation
GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Thermo Fisher Scientific
Industries
Food & Agriculture
 

Related articles

Considerations when working with solid samples and SPE
Article | Academy

Considerations when working with solid samples and SPE

Solid phase extraction enables clean-up, pre-concentration, and solvent switching. Proper solvent choice and SPE mode are key for effective solid sample preparation.
Phenomenex
tag
share
more
EnviroMail™12/Europe: ALS Net Zero Commitments & Roadmap in Support of our Staff, Clients, Communities & Shareholders
Article | Environment

EnviroMail™12/Europe: ALS Net Zero Commitments & Roadmap in Support of our Staff, Clients, Communities & Shareholders

ALS is committed to climate action and sustainability, aiming for Net Zero by 2050. Through innovation and science, we strive to make a meaningful impact and share progress with clients.
ALS Czech Republic
tag
share
more
Investigating the impact of packaging on oat volatiles using GC×GC–TOF MS (Steve Smith, MDCW 2025)
Presentation | Video

Investigating the impact of packaging on oat volatiles using GC×GC–TOF MS (Steve Smith, MDCW 2025)

Using HSSE and GC×GC-TOF MS, we investigate volatile migration in packaged oats. Advanced profiling reveals how different packaging materials impact aroma, safety, and product differentiation.
The Multidimensional Chromatography Workshop
tag
share
more
New material enables chemical production using sunlight and water
Article | Science and research

New material enables chemical production using sunlight and water

Scientists developed a catalyst that uses sunlight and water to hydrogenate a wide range of organics with high yield and selectivity—no gas hydrogen or harsh conditions needed.
CATRIN
tag
share
more
Other projects
LCMS
ICPMS
Follow us
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike