GCMS
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike
Author
Johns Hopkins University
We are America’s first research university, founded in 1876 on the principle that by pursuing big ideas and sharing what we learn, we can make the world a better place. For more than 140 years, our faculty and students have worked side by side in pursuit of discoveries that improve lives.
Tags
Article
Video
Scientific article
Science and research
Environment
Health
Logo of LinkedIn

RESEARCHERS SERVE UP AN IMPROVED MODEL OF INDOOR POLLUTION PRODUCED BY COOKING

Tu, 9.7.2024
| Original article from: JHU HUB/Lisa Ercolano
New approach could inform better public health guidelines.
Video placeholder
  • Photo: Johns Hopkins University HUB: RESEARCHERS SERVE UP AN IMPROVED MODEL OF INDOOR POLLUTION PRODUCED BY COOKING
  • Video: Johns Hopkins University: Air Today, Gone Tomorrow: How Air Particles Impact Human Health and the Environment

Stir-frying yields more than just tasty dishes like Kung Pao chicken and Hunan beef. It also emits an invisible mixture of gases and particles that pollute indoor air and can be detrimental to human health. Correctly estimating such cooking emissions in a variety of settings is critical for simulating exposure and informing health guidelines aimed at keeping people safe.

A team of researchers that included a Johns Hopkins University air-quality expert has developed a new model that can more accurately estimate and predict the concentration of particulate matter produced during stir-frying. Their approach improves on traditional methods, which have limitations when applied to real-world settings such as private homes and restaurants.

Johns Hopkins University: RESEARCHERS SERVE UP AN IMPROVED MODEL OF INDOOR POLLUTION PRODUCED BY COOKING.

"This new method utilized detailed particulate measurement data to develop a model that incorporates the dynamic changes in concentration and composition of particles as emissions from cooking move from where cooking happens to other areas of our indoor spaces. With this improved model, we can better understand the potential of exposure to cooking emissions in homes or commercial cooking areas," said Peter DeCarlo, an associate professor of environmental health and engineering at Johns Hopkins.

The team's results appeared inEnvironmental Science & Technology.

"WITH THIS IMPROVED MODEL, WE CAN BETTER UNDERSTAND THE POTENTIAL OF EXPOSURE TO COOKING EMISSIONS IN HOMES OR COMMERCIAL COOKING AREAS."

Peter DeCarlo (Associate professor, environmental health and engineering)

Stir-frying originated in China during the 14th century. Nowadays, billions of people worldwide use it as a quick, easy, and relatively healthy way to prepare a meal. However, cooking food this way—in sizzling oil in a hot wok or other pan—causes tiny particles of the oil and other chemicals in the food to become suspended in the air. These particles contain a broad range of organic materials, including triglycerides, fatty acids, and proteins, as well as a variety of chemicals and compounds that emerge when substances are exposed to heat and hot oil.

Other chemical compounds resulting from stir-frying are emitted directly as gases and some chemicals can move between the gas phase and particles based on how volatile they are.

Numerous studies have shown that exposure to outdoor particulate matter can contribute to cardiovascular and respiratory illnesses. Whether indoor—and, specifically, cooking-related particulate matter—has the same impact is still an unanswered question.

DeCarlo's team conducted detailed measurements of the composition of the cooking particles resulting from stir-frying a variety of vegetables in soybean oil in a nonstick wok or cast-iron skillet on both electric and gas stoves during repeated cooking sessions over a day. Using real-time measurements of particle concentrations and chemical composition, the team identified two main types of emissions: one dominant type chemically similar to cooking oil and a second one chemically similar to particles from burning wood containing partially burned sugars, which were likely from the cooking of vegetables and stir-fry sauce.

The two-zoned computer model the team developed to simulate the data from these experiments was meant to match conditions in a University of Texas at Austin laboratory "house," where a 2018 collaborative field study called the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign probed how everyday activities influence the emissions, chemical transformations, and removal of trace gases and particles in indoor air.

When past models noted that air pollution levels were higher than expected even after cooking stopped and stovetops were turned off, the assumption was that even though the action of cooking had stopped, emitted particles and gases were static and lingered.

DeCarlo and the team recognized that this was an error and that natural thermodynamics—how particles and gases dissipate as air moves—can cause concentrations and the composition of pollutants to change, once the cooking is over.

"We know that cooking emissions move throughout an indoor space, that's why you can smell what someone is cooking from a few rooms away. What we've done with this model is better characterize how thermodynamics changes the composition as those cooking particles as they spread throughout a space," DeCarlo said.

The new model not only provides details and estimates on pollution levels, airflow patterns, and particle concentrations in homes and buildings—where individuals and families could be affected—but also can be used as input data to assess potential exposures and risks at a larger, population level.

"While this detailed model can better characterize potential exposure to cooking-related emissions in indoor spaces, guidelines and public health recommendations remain the same. Ventilation of cooking emission to the outdoors is the best way to reduce exposure while air filtration and other measures also aid in reducing people's exposure inside homes and businesses," DeCarlo said.

Johns Hopkins University
 

Related content

Characterization of PFAS Chemicals in Anti-Fog Solutions Using Gas Chromatography, and High-Resolution Time-of-Flight Mass Spectrometry

Posters
| 2024 | LECO (ASMS)
Instrumentation
GC/HRMS, GC/MSD, GC/TOF
Manufacturer
LECO
Industries
Environmental

Greenhouse Gas Analyzer

Applications
| 2024 | Shimadzu
Instrumentation
GC
Manufacturer
Shimadzu
Industries
Environmental

Automated salt removal and dilution for online analysis of unprocessed lithium battery electrolytes using gas chromatography-mass spectrometry

Applications
| 2024 | Thermo Fisher Scientific
Instrumentation
Sample Preparation, GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Thermo Fisher Scientific
Industries
Energy & Chemicals

Brewing Excellence: Quantitating Over 200 Pesticides in Black Tea with Steady Performance and Maximized Uptime by GC/MS/MS

Applications
| 2024 | Agilent Technologies
Instrumentation
GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Agilent Technologies
Industries
Food & Agriculture

Fundamental Guide to Gas Chromatography Mass Spectrometry (GCMS)

Guides
| 2024 | Shimadzu
Instrumentation
GC, GCxGC, GC/HRMS, GC/MSD, GC/MS/MS, GC/QQQ, GC/SQ, GC/Q-TOF, GC/TOF
Manufacturer
Shimadzu
Industries
Others
 

Related articles


Article | Product

Replace your current Chromatography Software with Clarity and Save Big!

Replace your chromatography software with Clarity and get a 20% discount on the purchase!
DataApex
more

Article | Webinars

LabRulez: Webinars LabRulezGCMS Week 29/2024

3 webinars: Complexities of Catalyst Analysis; PFAS Workflows with Agilent SLIMS; FTIR Spectroscopy's efficiency in analyzing lithium-ion battery materials.
LabRulez
more

Article | Video

Introducing Mnova Web: A New Era for NMR Data Analysis

Mestrelab Research is proud to announce the release of Mnova Web, a SaaS solution designed to transform the way scientists and researchers process and analyze NMR data.
Mestrelab Research
more

Article | Events

22 nd International Summer School on Bioanalysis was held at the Chemistry Institute of the Faculty of Science, Charles University

82 participants, 25 teachers and 57 students, came from 19 universities in 10 different European countries.
Přírodovědecká fakulta Univerzity Karlovy
more
 

Related content

Characterization of PFAS Chemicals in Anti-Fog Solutions Using Gas Chromatography, and High-Resolution Time-of-Flight Mass Spectrometry

Posters
| 2024 | LECO (ASMS)
Instrumentation
GC/HRMS, GC/MSD, GC/TOF
Manufacturer
LECO
Industries
Environmental

Greenhouse Gas Analyzer

Applications
| 2024 | Shimadzu
Instrumentation
GC
Manufacturer
Shimadzu
Industries
Environmental

Automated salt removal and dilution for online analysis of unprocessed lithium battery electrolytes using gas chromatography-mass spectrometry

Applications
| 2024 | Thermo Fisher Scientific
Instrumentation
Sample Preparation, GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Thermo Fisher Scientific
Industries
Energy & Chemicals

Brewing Excellence: Quantitating Over 200 Pesticides in Black Tea with Steady Performance and Maximized Uptime by GC/MS/MS

Applications
| 2024 | Agilent Technologies
Instrumentation
GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Agilent Technologies
Industries
Food & Agriculture

Fundamental Guide to Gas Chromatography Mass Spectrometry (GCMS)

Guides
| 2024 | Shimadzu
Instrumentation
GC, GCxGC, GC/HRMS, GC/MSD, GC/MS/MS, GC/QQQ, GC/SQ, GC/Q-TOF, GC/TOF
Manufacturer
Shimadzu
Industries
Others
 

Related articles


Article | Product

Replace your current Chromatography Software with Clarity and Save Big!

Replace your chromatography software with Clarity and get a 20% discount on the purchase!
DataApex
more

Article | Webinars

LabRulez: Webinars LabRulezGCMS Week 29/2024

3 webinars: Complexities of Catalyst Analysis; PFAS Workflows with Agilent SLIMS; FTIR Spectroscopy's efficiency in analyzing lithium-ion battery materials.
LabRulez
more

Article | Video

Introducing Mnova Web: A New Era for NMR Data Analysis

Mestrelab Research is proud to announce the release of Mnova Web, a SaaS solution designed to transform the way scientists and researchers process and analyze NMR data.
Mestrelab Research
more

Article | Events

22 nd International Summer School on Bioanalysis was held at the Chemistry Institute of the Faculty of Science, Charles University

82 participants, 25 teachers and 57 students, came from 19 universities in 10 different European countries.
Přírodovědecká fakulta Univerzity Karlovy
more
 

Related content

Characterization of PFAS Chemicals in Anti-Fog Solutions Using Gas Chromatography, and High-Resolution Time-of-Flight Mass Spectrometry

Posters
| 2024 | LECO (ASMS)
Instrumentation
GC/HRMS, GC/MSD, GC/TOF
Manufacturer
LECO
Industries
Environmental

Greenhouse Gas Analyzer

Applications
| 2024 | Shimadzu
Instrumentation
GC
Manufacturer
Shimadzu
Industries
Environmental

Automated salt removal and dilution for online analysis of unprocessed lithium battery electrolytes using gas chromatography-mass spectrometry

Applications
| 2024 | Thermo Fisher Scientific
Instrumentation
Sample Preparation, GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Thermo Fisher Scientific
Industries
Energy & Chemicals

Brewing Excellence: Quantitating Over 200 Pesticides in Black Tea with Steady Performance and Maximized Uptime by GC/MS/MS

Applications
| 2024 | Agilent Technologies
Instrumentation
GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Agilent Technologies
Industries
Food & Agriculture

Fundamental Guide to Gas Chromatography Mass Spectrometry (GCMS)

Guides
| 2024 | Shimadzu
Instrumentation
GC, GCxGC, GC/HRMS, GC/MSD, GC/MS/MS, GC/QQQ, GC/SQ, GC/Q-TOF, GC/TOF
Manufacturer
Shimadzu
Industries
Others
 

Related articles


Article | Product

Replace your current Chromatography Software with Clarity and Save Big!

Replace your chromatography software with Clarity and get a 20% discount on the purchase!
DataApex
more

Article | Webinars

LabRulez: Webinars LabRulezGCMS Week 29/2024

3 webinars: Complexities of Catalyst Analysis; PFAS Workflows with Agilent SLIMS; FTIR Spectroscopy's efficiency in analyzing lithium-ion battery materials.
LabRulez
more

Article | Video

Introducing Mnova Web: A New Era for NMR Data Analysis

Mestrelab Research is proud to announce the release of Mnova Web, a SaaS solution designed to transform the way scientists and researchers process and analyze NMR data.
Mestrelab Research
more

Article | Events

22 nd International Summer School on Bioanalysis was held at the Chemistry Institute of the Faculty of Science, Charles University

82 participants, 25 teachers and 57 students, came from 19 universities in 10 different European countries.
Přírodovědecká fakulta Univerzity Karlovy
more
 

Related content

Characterization of PFAS Chemicals in Anti-Fog Solutions Using Gas Chromatography, and High-Resolution Time-of-Flight Mass Spectrometry

Posters
| 2024 | LECO (ASMS)
Instrumentation
GC/HRMS, GC/MSD, GC/TOF
Manufacturer
LECO
Industries
Environmental

Greenhouse Gas Analyzer

Applications
| 2024 | Shimadzu
Instrumentation
GC
Manufacturer
Shimadzu
Industries
Environmental

Automated salt removal and dilution for online analysis of unprocessed lithium battery electrolytes using gas chromatography-mass spectrometry

Applications
| 2024 | Thermo Fisher Scientific
Instrumentation
Sample Preparation, GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Thermo Fisher Scientific
Industries
Energy & Chemicals

Brewing Excellence: Quantitating Over 200 Pesticides in Black Tea with Steady Performance and Maximized Uptime by GC/MS/MS

Applications
| 2024 | Agilent Technologies
Instrumentation
GC/MSD, GC/MS/MS, GC/QQQ
Manufacturer
Agilent Technologies
Industries
Food & Agriculture

Fundamental Guide to Gas Chromatography Mass Spectrometry (GCMS)

Guides
| 2024 | Shimadzu
Instrumentation
GC, GCxGC, GC/HRMS, GC/MSD, GC/MS/MS, GC/QQQ, GC/SQ, GC/Q-TOF, GC/TOF
Manufacturer
Shimadzu
Industries
Others
 

Related articles


Article | Product

Replace your current Chromatography Software with Clarity and Save Big!

Replace your chromatography software with Clarity and get a 20% discount on the purchase!
DataApex
more

Article | Webinars

LabRulez: Webinars LabRulezGCMS Week 29/2024

3 webinars: Complexities of Catalyst Analysis; PFAS Workflows with Agilent SLIMS; FTIR Spectroscopy's efficiency in analyzing lithium-ion battery materials.
LabRulez
more

Article | Video

Introducing Mnova Web: A New Era for NMR Data Analysis

Mestrelab Research is proud to announce the release of Mnova Web, a SaaS solution designed to transform the way scientists and researchers process and analyze NMR data.
Mestrelab Research
more

Article | Events

22 nd International Summer School on Bioanalysis was held at the Chemistry Institute of the Faculty of Science, Charles University

82 participants, 25 teachers and 57 students, came from 19 universities in 10 different European countries.
Přírodovědecká fakulta Univerzity Karlovy
more
Other projects
Follow us
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike