γ-Butyrolacton & Pyrrolidones
Applications | | GL SciencesInstrumentation
Analysis of residual solvents such as gamma-Butyrolactone and pyrrolidones is crucial for ensuring product safety and compliance in pharmaceutical and polymer industries. Quality control laboratories require robust gas chromatography methods to detect and quantify low levels of these compounds.
This application note presents the development of a GC-FID method tailored to separate and quantify three key residual solvents: gamma-Butyrolactone (GBL), N-Methyl-2-pyrrolidone (NMP), and N-Vinyl-2-pyrrolidone (NVP). The focus is on achieving baseline separation within a reasonable analysis time using an inert capillary column.
The method achieved clear, baseline resolution of GBL, NMP, and NVP within a 20-minute runtime. Chromatographic peaks were sharp and symmetrical, indicating minimal interaction with the column surface. The inert capillary phase prevented adsorption and improved reproducibility of retention times across multiple injections.
The presented GC-FID method using an InertCap Pure-WAX column offers a robust, sensitive, and reproducible solution for the analysis of gamma-Butyrolactone and pyrrolidone derivatives. It meets stringent QA/QC demands while delivering precise quantitation of critical residual solvents.
GC, GC columns, Consumables
IndustriesManufacturerGL Sciences
Summary
Significance of the Topic
Analysis of residual solvents such as gamma-Butyrolactone and pyrrolidones is crucial for ensuring product safety and compliance in pharmaceutical and polymer industries. Quality control laboratories require robust gas chromatography methods to detect and quantify low levels of these compounds.
Aim and Overview of the Study
This application note presents the development of a GC-FID method tailored to separate and quantify three key residual solvents: gamma-Butyrolactone (GBL), N-Methyl-2-pyrrolidone (NMP), and N-Vinyl-2-pyrrolidone (NVP). The focus is on achieving baseline separation within a reasonable analysis time using an inert capillary column.
Used Instrumentation
- Gas Chromatograph with Flame Ionization Detector (GC/FID)
- InertCap Pure-WAX capillary column (0.32 mm I.D. × 30 m length, 0.5 μm film thickness)
- Carrier gas: helium at 50 kPa
- Injection mode: split, 180 mL/min split flow; injector temperature 240 °C
- FID temperature: 240 °C, detection range 10^0
Methodology
- Sample preparation: dissolve analytes at 1 mg/mL in acetone; inject 1 μL.
- Oven temperature program: start at 50 °C, ramp at 10 °C/min to 240 °C, hold for 2 min.
- Carrier gas flow and column conditions optimized for inertness and peak shape.
Main Results and Discussion
The method achieved clear, baseline resolution of GBL, NMP, and NVP within a 20-minute runtime. Chromatographic peaks were sharp and symmetrical, indicating minimal interaction with the column surface. The inert capillary phase prevented adsorption and improved reproducibility of retention times across multiple injections.
Benefits and Practical Applications
- Accurate quantification of residual solvents for regulatory compliance in pharmaceuticals, polymers, and chemical manufacturing.
- Enhanced method robustness and reproducibility due to the inert column surface.
- Compatibility with routine QA/QC laboratories looking for straightforward, reliable GC analyses.
Future Trends and Potential Applications
- Coupling with mass spectrometry detection to expand compound identification and lower detection limits.
- Extension of the approach to additional residual solvents and greener solvent alternatives.
- Adoption of fast GC methods to shorten analysis times and increase laboratory throughput.
Conclusion
The presented GC-FID method using an InertCap Pure-WAX column offers a robust, sensitive, and reproducible solution for the analysis of gamma-Butyrolactone and pyrrolidone derivatives. It meets stringent QA/QC demands while delivering precise quantitation of critical residual solvents.
Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.
Similar PDF
γ-Butyrolacton & Diols
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications γ-Butyrolacton & Diols Data No. GA136-0591 60 2 6 3 40 5 4 1 20 1 0 0 10 Time (min) “2,3-Butanediol” Dimethylene glycol Dimethylene glycol Analyte “2 3 Dihydroxybutane” “2,3-Dihydroxybutane” “2 3 ブタンジオール”…
Key words
ブチロラクトン, ブチロラクトンbutyrolactone, butyrolactonebutyrolacton, butyrolactondiols, diolsinertsearch, inertsearchinertcap, inertcapdimethylene, dimethyleneジオール, ジオールジメチレングリコール, ジメチレングリコールペンチレングリコール, ペンチレングリコールガンマ, ガンマグリコール, グリコールglycol, glycolpentanediol, pentanediolgbl
Residual solvents in pharmaceuticals
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications R id l solvents Residual l t in i pharmaceuticals h ti l Data No. GA123-0850 180000 160000 140000 66 64 56 120000 63 58+59 100000 Acetone 80000 60000 40000 20000 0 0 アセトン…
Key words
alcohol, alcoholbutyl, butylmethyl, methylether, etherketone, ketoneethyl, ethylacetate, acetatepropyl, propylisopropyl, isopropylcellosolve, cellosolveacetic, aceticキシレン, キシレンester, esterisobutyl, isobutylacid
Vinyl acetate monomer
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications Vinyl acetate monomer Data No. GA195-0591 3000 2000 1 1000 0 0 10 Ti (min) Time ( i ) 20 Conditions : GC/FID : InertCap 1 0 32 mm I.D. 0.32 I D x…
Key words
monomer, monomervinyl, vinylacetate, acetateガスクロマトグラフィー, ガスクロマトグラフィーイナートサーチ, イナートサーチイナートキャップ, イナートキャップキャピラリーカラム, キャピラリーカラムジーエルサイエンス, ジーエルサイエンスsolvents, solventsクロマトグラム, クロマトグラムinertsearch, inertsearchinertcap, inertcapエテニル, エテニルサクサンビニルモノマー, サクサンビニルモノマービニルモノマー
Organic solvents
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications Organic solvents Data No. GA023-0850 14000 1 12000 10000 9 13 12 14 15 17 8000 6000 3 6 4 4000 11 2 78 10 166 5 19 18 2000 0 10 Acetic acid…
Key words
キシレン, キシレンacetate, acetatebutyl, butylalcohol, alcoholアニソール, アニソールテトラヒドロフラン, テトラヒドロフランヘプタン, ヘプタンethyl, ethylエチルベンゼン, エチルベンゼンアセトン, アセトンエタノール, エタノールanisole, anisoleacetic, aceticxylene, xyleneheptane