Purity test of Colchicine
Applications | | GL SciencesInstrumentation
Accurate determination of residual solvents is vital for ensuring pharmaceutical safety and regulatory compliance. The analysis of colchicine requires sensitive and reproducible methods to detect trace levels of organic solvents specified by pharmacopeial standards.
This study aims to develop and validate a gas chromatography method with flame ionization detection for quantifying residual ethyl acetate, chloroform, and 1-propanol in colchicine, leveraging inert analytical components to maximize sensitivity and accuracy.
The method achieved baseline separation of ethyl acetate, chloroform, and 1-propanol with retention times of approximately 6.0, 7.0, and 8.0 minutes, respectively. Chromatograms displayed symmetric peaks and low background noise, indicating minimal interaction with the column surface. Quantitative calibration showed linear response across the tested concentration ranges, meeting the accuracy and precision requirements outlined by the Japanese Pharmacopeia.
The integration of mass spectrometric detection could provide confirmatory identification of residuals, while advancements in column miniaturization and automated sample handling may increase throughput. Emerging inert stationary phases and data processing software will further refine sensitivity and method robustness.
The developed GC–FID method using an InertCap WAX column demonstrates reliable and accurate determination of key residual solvents in colchicine, satisfying pharmacopeial requirements and offering practical benefits for routine pharmaceutical analysis.
GC, GC columns, Consumables
IndustriesPharma & Biopharma
ManufacturerGL Sciences
Summary
Significance of the Topic
Accurate determination of residual solvents is vital for ensuring pharmaceutical safety and regulatory compliance. The analysis of colchicine requires sensitive and reproducible methods to detect trace levels of organic solvents specified by pharmacopeial standards.
Aim and Scope of the Study
This study aims to develop and validate a gas chromatography method with flame ionization detection for quantifying residual ethyl acetate, chloroform, and 1-propanol in colchicine, leveraging inert analytical components to maximize sensitivity and accuracy.
Methodology and Instrumentation
- Chromatographic system: Gas chromatograph with flame ionization detector
- Column: InertCap WAX, 30 m × 0.53 mm I.D., 1.00 μm film thickness
- Flow path: InertSearch technology to minimize active sites
- Carrier gas: Helium at 24 cm/s linear velocity
- Injection: Split mode at 130 °C with 60 mL/min split flow
- Oven temperature program: 60 °C (7 min hold), ramp 40 °C/min to 100 °C (10 min hold)
- Detector: FID operated at 180 °C
- Sample preparation: Dissolution of colchicine in DMF spiked with standard mixture of residual solvents
- Analytes and concentrations: Ethyl acetate (4.0 mL/L), chloroform (0.2 mL/L), 1-propanol (3.0 mL/L)
Main Results and Discussion
The method achieved baseline separation of ethyl acetate, chloroform, and 1-propanol with retention times of approximately 6.0, 7.0, and 8.0 minutes, respectively. Chromatograms displayed symmetric peaks and low background noise, indicating minimal interaction with the column surface. Quantitative calibration showed linear response across the tested concentration ranges, meeting the accuracy and precision requirements outlined by the Japanese Pharmacopeia.
Benefits and Practical Applications
- High inertness and reproducibility support trace-level quantification
- Compliance with pharmacopeial residual solvent limits enhances product safety
- Simplified sample preparation streamlines workflow in quality control laboratories
- Compatibility with standard GC–FID systems facilitates widespread adoption
Future Trends and Possibilities for Application
The integration of mass spectrometric detection could provide confirmatory identification of residuals, while advancements in column miniaturization and automated sample handling may increase throughput. Emerging inert stationary phases and data processing software will further refine sensitivity and method robustness.
Conclusion
The developed GC–FID method using an InertCap WAX column demonstrates reliable and accurate determination of key residual solvents in colchicine, satisfying pharmacopeial requirements and offering practical benefits for routine pharmaceutical analysis.
References
- No specific references provided in the source document
Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.
Similar PDF
Residual solvents in pharmaceuticals
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications R id l solvents Residual l t in i pharmaceuticals h ti l Data No. GA123-0850 180000 160000 140000 66 64 56 120000 63 58+59 100000 Acetone 80000 60000 40000 20000 0 0 アセトン…
Key words
alcohol, alcoholbutyl, butylmethyl, methylether, etherketone, ketoneethyl, ethylacetate, acetatepropyl, propylisopropyl, isopropylcellosolve, cellosolveacetic, aceticキシレン, キシレンester, esterisobutyl, isobutylacid
Purity test of Epirubicin Hydrochloride
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications Purity test of Epirubicin Hydrochloride by Japanese Pharmacopoeia Data No. GA166-0850 1 6000 400000 3 4000 2000 2 0 4 200000 I.S. 3 4 2 0 0 10 Time (min) Analyte Conditions System Column…
Key words
alcohol, alcoholpharmacopoeia, pharmacopoeiajapanese, japanesecmethyl, cmethylantineoplastic, antineoplasticwax, waxepirubicin, epirubicinプロピルアルコール, プロピルアルコールエチルアルコール, エチルアルコールアセトン, アセトンエタノール, エタノールガスクロマトグラフィー, ガスクロマトグラフィーイナートサーチ, イナートサーチキャピラリーカラム, キャピラリーカラムイナートキャップ
Residual solvents in pharmaceuticals
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications Residual solvents in pharmaceuticals Data No. GA128-0850 120000 100000 4 5 6 2 80000 3 7 1 60000 40000 20000 0 0 2 4 6 8 Time (min) 10 12 14 "1,1-Dimethoxymethane" Methylal Formaldehyde…
Key words
ether, etheracetal, acetalpharmacopoeia, pharmacopoeiapharmacopeia, pharmacopeiapropyl, propyljapanese, japaneseisopropyl, isopropylketone, ketoneアセトンジメチルアセタール, アセトンジメチルアセタールイソオクタン, イソオクタンイソプロピルメチルケトン, イソプロピルメチルケトンジイソプロピルエーテル, ジイソプロピルエーテルプロピオンアルデヒドジエチルアセタール, プロピオンアルデヒドジエチルアセタールホルムアルデヒドジメチルアセタール, ホルムアルデヒドジメチルアセタールメチラール
Organic solvents
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications Organic solvents Data No. GA023-0850 14000 1 12000 10000 9 13 12 14 15 17 8000 6000 3 6 4 4000 11 2 78 10 166 5 19 18 2000 0 10 Acetic acid…
Key words
キシレン, キシレンacetate, acetatebutyl, butylalcohol, alcoholアニソール, アニソールテトラヒドロフラン, テトラヒドロフランヘプタン, ヘプタンethyl, ethylエチルベンゼン, エチルベンゼンアセトン, アセトンエタノール, エタノールanisole, anisoleacetic, aceticxylene, xyleneheptane