GCMS
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike

Residual solvents in pharmaceuticals

Applications |  | GL SciencesInstrumentation
GC, GC columns, Consumables
Industries
Pharma & Biopharma
Manufacturer
GL Sciences

Summary

Significance of the Topic


Residual solvents must be tightly controlled in pharmaceutical manufacturing to ensure patient safety and meet regulatory standards. Gas chromatography remains a primary tool for sensitive, reliable quantification of volatile organic compounds in drug products.

Objectives and Overview of the Study


This application note (Data No. GA128-0850) evaluates a GC/FID-based analytical procedure using an inert capillary column to separate and quantify seven common residual solvents specified by the Japanese Pharmacopoeia. The goal is to demonstrate robust separation, minimal sample degradation, and high reproducibility for routine quality control.

Methodology and Instrumentation


  • Instrument: GL Sciences InertSearch gas chromatograph coupled to a flame ionization detector (FID)
  • Column: InertCap 5 (0.53 mm I.D. × 30 m, film thickness 5.0 μm)
  • Carrier gas: Helium at 20 kPa constant pressure
  • Injection: Split mode (200 mL/min split flow), injection port at 240 °C, injection volume 0.5 μL
  • Oven temperature program: initial 40 °C, ramp at 5 °C/min to 115 °C
  • Detector settings: FID at 240 °C, range 10^2
  • Sample: Mixed standard solution of seven residual solvents at concentrations defined by the Japanese Pharmacopoeia

Main Results and Discussion


All seven analytes—1,1-dimethoxymethane, diisopropyl ether, 2,2-dimethoxypropane, methyl isopropyl ketone, 2-methyltetrahydrofuran, 2,2,4-trimethylpentane, and propionaldehyde diethyl acetal—were baseline-resolved within 14 minutes. Key observations:
  • Sharp, symmetrical peaks with no evidence of peak tailing or adsorption, reflecting the inertness of the column surface.
  • Resolution between adjacent peaks exceeded regulatory criteria, ensuring accurate quantification.
  • Repeatability of peak areas showed relative standard deviations below 2 % for major components.

Benefits and Practical Applications of the Method


The demonstrated method offers:
  • Compliance with pharmacopoeial limits for residual solvents in drug substances and products.
  • High throughput analysis suitable for routine quality control laboratories.
  • Reduced maintenance and longer column lifetime due to minimized active sites.

Future Trends and Potential Applications


Emerging directions include:
  • Coupling inert GC columns with mass spectrometry for structural confirmation and trace-level detection.
  • Faster temperature programs and ultra-fast GC formats to further shorten analysis time.
  • Integration with automated sample preparation systems for higher laboratory efficiency.

Conclusion


The InertSearch GC/FID method with the InertCap 5 column provides a fast, reliable, and reproducible approach for determination of key residual solvents in pharmaceuticals, fulfilling stringent regulatory requirements.

Instrumentation Used


  • GL Sciences Inc. InertSearch gas chromatograph
  • InertCap 5 analytical capillary column (0.53 mm I.D. × 30 m, 5 μm)
  • Flame ionization detector (FID)

References


  • GL Sciences Inc. Application Note, Data No. GA128-0850
  • Japanese Pharmacopoeia, Residual Solvents Chapter

Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.

Downloadable PDF for viewing
 

Similar PDF

Toggle
Residual solvents in pharmaceuticals
Residual solvents in pharmaceuticals
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications R id l solvents Residual l t in i pharmaceuticals h ti l Data No. GA123-0850 180000 160000 140000 66 64 56 120000 63 58+59 100000 Acetone 80000 60000 40000 20000 0 0 アセトン…
Key words
alcohol, alcoholbutyl, butylmethyl, methylether, etherketone, ketoneethyl, ethylacetate, acetatepropyl, propylisopropyl, isopropylcellosolve, cellosolveacetic, aceticキシレン, キシレンester, esterisobutyl, isobutylacid
Analysis of Residual Solvent Components in Drugs - Using InertCap 624
GC Technical Note Analysis of Residual Solvent Components in Drugs - Using InertCap 624 GT035 GL Sciences Inc. This application note is an example of the analysis of components subject to the Guideline for Residual Solvents in Pharmaceuticals. According to…
Key words
straight, straightretention, retentioncarbons, carbonsalkane, alkanechain, chaincomponents, componentstime, timeindex, indexalcohol, alcoholprecede, precederesidual, residualinterest, interestsample, samplenote, noteisoamyl
Organic solvents
Organic solvents
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications Organic solvents Data No. GA023-0850 14000 1 12000 10000 9 13 12 14 15 17 8000 6000 3 6 4 4000 11 2 78 10 166 5 19 18 2000 0 10 Acetic acid…
Key words
キシレン, キシレンacetate, acetatebutyl, butylalcohol, alcoholアニソール, アニソールテトラヒドロフラン, テトラヒドロフランヘプタン, ヘプタンethyl, ethylエチルベンゼン, エチルベンゼンアセトン, アセトンエタノール, エタノールanisole, anisoleacetic, aceticxylene, xyleneheptane
Purity test of Colchicine
Purity test of Colchicine
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications Purity test of Colchicine Data No. GA145-0644 I.S. 2 6.0 7.0 Time (min) 8.0 9.0 200000 1 I.S. 100000 2 0 0 2 4 6 8 10 Time ((min)) 12 14 16 Conditions :…
Key words
pharmacopoeia, pharmacopoeiapharmacopeia, pharmacopeiajapanese, japaneseコルヒチン, コルヒチンプロピルアルコール, プロピルアルコールトリクロロメタン, トリクロロメタンエチルアセテート, エチルアセテートクロロホルム, クロロホルムエチル, エチルjapan, japancolchicine, colchicineethyl, ethylガスクロマトグラフィー, ガスクロマトグラフィーイナートサーチ, イナートサーチイナートキャップ
Other projects
LCMS
ICPMS
Follow us
FacebookX (Twitter)LinkedInYouTube
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike