Impurities in Triethylene glycol
Applications | | GL SciencesInstrumentation
Triethylene glycol (TEG) is a critical solvent and drying agent in various industrial processes, including natural gas dehydration and chemical synthesis. Trace impurities such as ethylene glycol and diethylene glycol can compromise product performance, safety, and regulatory compliance. Precise quantification of these low-level contaminants by gas chromatography ensures process control and quality assurance in manufacturing and research settings.
This application note describes the development and validation of a robust GC/FID method for detecting and quantifying impurities in TEG. The aim is to achieve baseline separation of ethylene glycol, diethylene glycol, and TEG using an inert capillary column, ensuring high sensitivity and reproducibility for routine quality control.
The analysis was performed on a GC system equipped with a flame ionization detector (FID). Key parameters included:
The chromatogram demonstrated clear resolution between target analytes. Ethylene glycol was not detected at the levels tested. Diethylene glycol eluted first, followed by the TEG peak. The inert surface treatment of the column minimized peak tailing and adsorption, delivering sharp, symmetrical peaks and consistent retention times. This stability under extended temperature programming confirms the column’s suitability for glycol impurity analysis.
This method provides:
Emerging inert column technologies and coupling GC with mass spectrometry (GC-MS) can further improve selectivity and detection limits. Automation of sample preparation and data processing will enhance throughput in routine laboratories. Additionally, inline GC monitoring for real-time process control in dehydration units represents a promising development.
The presented GC/FID method using an InertCap® 1 column offers a robust solution for the separation and quantification of diethylene glycol and TEG. Its high inertness and reproducibility make it an effective tool for quality control in industrial and research laboratories.
GC, GC columns, Consumables
IndustriesManufacturerGL Sciences
Summary
Significance of the Topic
Triethylene glycol (TEG) is a critical solvent and drying agent in various industrial processes, including natural gas dehydration and chemical synthesis. Trace impurities such as ethylene glycol and diethylene glycol can compromise product performance, safety, and regulatory compliance. Precise quantification of these low-level contaminants by gas chromatography ensures process control and quality assurance in manufacturing and research settings.
Objectives and Study Overview
This application note describes the development and validation of a robust GC/FID method for detecting and quantifying impurities in TEG. The aim is to achieve baseline separation of ethylene glycol, diethylene glycol, and TEG using an inert capillary column, ensuring high sensitivity and reproducibility for routine quality control.
Methodology
The analysis was performed on a GC system equipped with a flame ionization detector (FID). Key parameters included:
- Column: InertCap® 1, 0.32 mm I.D. × 30 m, film thickness 5.00 µm
- Oven temperature program: 40 °C initial, ramp at 10 °C/min to 250 °C, hold for 59 min
- Carrier gas: Helium at 100 kPa
- Injection: Split mode, split flow 40 mL/min, injector temperature 250 °C
- Detection: FID at 250 °C, range 10⁰
- Sample volume: 1.0 µL of pure TEG
Used Instrumentation
- Gas chromatograph with FID detector (GC/FID configuration)
- InertCap® 1 capillary column (GL Sciences, Cat. No. 1010-11249)
Key Results and Discussion
The chromatogram demonstrated clear resolution between target analytes. Ethylene glycol was not detected at the levels tested. Diethylene glycol eluted first, followed by the TEG peak. The inert surface treatment of the column minimized peak tailing and adsorption, delivering sharp, symmetrical peaks and consistent retention times. This stability under extended temperature programming confirms the column’s suitability for glycol impurity analysis.
Benefits and Practical Applications
This method provides:
- High sensitivity for low-level impurities in TEG
- Reliable quantification supporting industrial QA/QC
- Reduced maintenance due to inert column surface
- Straightforward implementation on standard GC/FID systems
Future Trends and Potential Applications
Emerging inert column technologies and coupling GC with mass spectrometry (GC-MS) can further improve selectivity and detection limits. Automation of sample preparation and data processing will enhance throughput in routine laboratories. Additionally, inline GC monitoring for real-time process control in dehydration units represents a promising development.
Conclusion
The presented GC/FID method using an InertCap® 1 column offers a robust solution for the separation and quantification of diethylene glycol and TEG. Its high inertness and reproducibility make it an effective tool for quality control in industrial and research laboratories.
Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.
Similar PDF
Glycols & Glycerine
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications Glycols & Glycerine Data No. GA100-0875 200000 2 1 3 100000 4 0 0 2 4 Time (min) 6 8 Conditions System Column : GC/FID Analyte : 1. Ethylene glycol : InertCap 1701 2.…
Key words
glycol, glycolグリセリン, グリセリンプロピレングリコール, プロピレングリコールglycerin, glycerinエチレングリコール, エチレングリコールglycerine, glycerinediethylene, diethyleneglycols, glycolsinertsearch, inertsearchinertcap, inertcappharmacopoeia, pharmacopoeiaプロピレングリコ, プロピレングリコpropylene, propyleneoxydiethanol, oxydiethanolグリコール
γ-Butyrolacton & Diols
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications γ-Butyrolacton & Diols Data No. GA136-0591 60 2 6 3 40 5 4 1 20 1 0 0 10 Time (min) “2,3-Butanediol” Dimethylene glycol Dimethylene glycol Analyte “2 3 Dihydroxybutane” “2,3-Dihydroxybutane” “2 3 ブタンジオール”…
Key words
ブチロラクトン, ブチロラクトンbutyrolactone, butyrolactonebutyrolacton, butyrolactondiols, diolsinertsearch, inertsearchinertcap, inertcapdimethylene, dimethyleneジオール, ジオールジメチレングリコール, ジメチレングリコールペンチレングリコール, ペンチレングリコールガンマ, ガンマグリコール, グリコールglycol, glycolpentanediol, pentanediolgbl
Propylene glycol, Diethylene glycol, Ethylene glycol
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications Propylene glycol, Diethylene glycol, Ethylene glycol Data No. GA210-0644 200000 2 3 1 0 0 2 4 6 8 Time (min) 10 12 14 Conditions System Column : GC/FID Analyte : : InertCap 1701…
Key words
ジエチレングリコール, ジエチレングリコールglycolsize, glycolsizeプロピレングリコール, プロピレングリコールglycol, glycolオキシジエタノール, オキシジエタノールエタンジオール, エタンジオールethylene, ethyleneエチレングリコール, エチレングリコールガスクロマトグラフィー, ガスクロマトグラフィーイナートサーチ, イナートサーチキャピラリーカラム, キャピラリーカラムイナートキャップ, イナートキャップジーエルサイエンス, ジーエルサイエンスクロマトグラム, クロマトグラムdiethylene
Ethylene oxide in Ethanol
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications Ethylene oxide in Ethanol Data No. GA147-0591 12000 3 10000 2 8000 uVolt 6000 4000 1 2000 0 0 10 20 30 Time (min) Conditions Analyte : GC/FID Headspace Gas(HT3) 1. Ethylene oxide 1…
Key words
ethylene, ethyleneoxide, oxidecheminnovayion, cheminnovayiongasthen, gasthenエチレンオキシド, エチレンオキシドオキシラン, オキシランプロピレン, プロピレンプロピレンオキサイド, プロピレンオキサイドプロピレンオキシド, プロピレンオキシドメチルオキシラン, メチルオキシランpropylene, propyleneエチレン, エチレンヘッドスペース, ヘッドスペースヘッドスペースガス, ヘッドスペースガスoxirane