Propylene glycol, Diethylene glycol, Ethylene glycol
Applications | | GL SciencesInstrumentation
Quantitative analysis of low–molecular-weight glycols such as ethylene glycol, propylene glycol and diethylene glycol is critical in pharmaceutical quality control, environmental monitoring and chemical manufacturing. Accurate determination of these polar compounds helps ensure product safety, regulatory compliance and process optimization.
This application note demonstrates a gas chromatographic method with flame ionization detection (GC/FID) for the separation and quantification of ethylene glycol, propylene glycol and diethylene glycol. The study aims to achieve baseline resolution of all three analytes within a short runtime using an inert capillary column.
A methanolic standard solution containing each glycol at 500 μg/mL was injected (1.0 μL) in split mode. The temperature program started at 100 °C, ramped at 7.5 °C/min to 220 °C, and held to elute higher-boiling species. Helium at 80 kPa served as carrier gas. GC/FID provided quantitative detection under robust conditions suitable for routine analysis.
The chromatogram displayed three well-resolved peaks with retention times near 4, 6 and 8 minutes corresponding to ethylene glycol, propylene glycol and diethylene glycol, respectively. The inert surface of the column minimized peak tailing and sample adsorption, ensuring sharp peak shapes. Total analysis time was under 15 minutes, demonstrating high throughput.
Coupling inert GC columns with mass spectrometric detection can enhance selectivity for trace-level glycols in complex matrices. Development of faster temperature programs and miniaturized systems will further shorten analysis times. Integration with automated sample preparation platforms can improve throughput in high-volume laboratories.
The presented GC/FID method offers a reliable, fast and reproducible approach for the analysis of ethylene glycol, propylene glycol and diethylene glycol. The inert capillary column ensures minimal sample-column interactions, making the method ideal for routine quality control and environmental monitoring.
No literature references were provided in the original document.
GC, GC columns, Consumables
IndustriesManufacturerGL Sciences
Summary
Significance of the Topic
Quantitative analysis of low–molecular-weight glycols such as ethylene glycol, propylene glycol and diethylene glycol is critical in pharmaceutical quality control, environmental monitoring and chemical manufacturing. Accurate determination of these polar compounds helps ensure product safety, regulatory compliance and process optimization.
Objectives and Overview
This application note demonstrates a gas chromatographic method with flame ionization detection (GC/FID) for the separation and quantification of ethylene glycol, propylene glycol and diethylene glycol. The study aims to achieve baseline resolution of all three analytes within a short runtime using an inert capillary column.
Methodology
A methanolic standard solution containing each glycol at 500 μg/mL was injected (1.0 μL) in split mode. The temperature program started at 100 °C, ramped at 7.5 °C/min to 220 °C, and held to elute higher-boiling species. Helium at 80 kPa served as carrier gas. GC/FID provided quantitative detection under robust conditions suitable for routine analysis.
Instrumentation Used
- Gas chromatograph with FID detector
- InertCap® 1701 capillary column (0.32 mm I.D. × 30 m, 1.00 μm film thickness)
- Split injection (40 mL/min), injector at 220 °C
- Detector temperature: 250 °C
- Carrier gas: He, 80 kPa
Main Results and Discussion
The chromatogram displayed three well-resolved peaks with retention times near 4, 6 and 8 minutes corresponding to ethylene glycol, propylene glycol and diethylene glycol, respectively. The inert surface of the column minimized peak tailing and sample adsorption, ensuring sharp peak shapes. Total analysis time was under 15 minutes, demonstrating high throughput.
Benefits and Practical Applications
- High resolution and reproducibility for polar analytes
- Short runtime suitable for routine QC workflows
- Inert column chemistry reduces active site interactions
- Applicable to pharmaceutical, food and environmental testing
Future Trends and Potential Uses
Coupling inert GC columns with mass spectrometric detection can enhance selectivity for trace-level glycols in complex matrices. Development of faster temperature programs and miniaturized systems will further shorten analysis times. Integration with automated sample preparation platforms can improve throughput in high-volume laboratories.
Conclusion
The presented GC/FID method offers a reliable, fast and reproducible approach for the analysis of ethylene glycol, propylene glycol and diethylene glycol. The inert capillary column ensures minimal sample-column interactions, making the method ideal for routine quality control and environmental monitoring.
Reference
No literature references were provided in the original document.
Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.
Similar PDF
Glycerin, Diethylene glycol, Ethylene glycol
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications Glycerin, Diethylene glycol, Ethylene glycol Data No. GA209-0644 200000 2 1 3 0 0 2 4 6 8 Time (min) 10 12 14 Conditions System Column : GC/FID : InertCap 1701 0.32 mm I.D.…
Key words
ジエチレングリコール, ジエチレングリコールエチレングリコール, エチレングリコールグリセリン, グリセリンオキシジエタノール, オキシジエタノールエタンジオール, エタンジオールガスクロマトグラフィー, ガスクロマトグラフィーイナートサーチ, イナートサーチキャピラリーカラム, キャピラリーカラムイナートキャップ, イナートキャップジーエルサイエンス, ジーエルサイエンスクロマトグラム, クロマトグラムinertsearch, inertsearchinertcap, inertcapmedicine, medicinevoc
Glycols & Glycerine
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications Glycols & Glycerine Data No. GA100-0875 200000 2 1 3 100000 4 0 0 2 4 Time (min) 6 8 Conditions System Column : GC/FID Analyte : 1. Ethylene glycol : InertCap 1701 2.…
Key words
glycol, glycolグリセリン, グリセリンプロピレングリコール, プロピレングリコールglycerin, glycerinエチレングリコール, エチレングリコールglycerine, glycerinediethylene, diethyleneglycols, glycolsinertsearch, inertsearchinertcap, inertcappharmacopoeia, pharmacopoeiaプロピレングリコ, プロピレングリコpropylene, propyleneoxydiethanol, oxydiethanolグリコール
Impurities in Triethylene glycol
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications Impurities in Triethylene glycol Data No. GA149-0591 0.4 1 2 V 0.2 0.0 6 8 10 Time (min) 12 14 3 0.4 2 V 0.2 Ethylene glycol “1,2-Ethanediol” エチレングリコール エタンジオール 107-21-1 0.0 Diethylene glycol…
Key words
triethylene, triethyleneトリエチレングリコール, トリエチレングリコールglycol, glycolteg, teginertsearch, inertsearchinertcap, inertcapimpurities, impuritiesoxydiethanol, oxydiethanolジエチレングリコール, ジエチレングリコールオキシジエタノール, オキシジエタノールエタンジオール, エタンジオールエチレングリコール, エチレングリコールガスクロマトグラフィー, ガスクロマトグラフィーキャピラリーカラム, キャピラリーカラムイナートサーチ
Organic solvents
|GL Sciences|Applications
InertSearch for GC TM InertCap® Applications Organic solvents Data No. GA023-0850 14000 1 12000 10000 9 13 12 14 15 17 8000 6000 3 6 4 4000 11 2 78 10 166 5 19 18 2000 0 10 Acetic acid…
Key words
キシレン, キシレンacetate, acetatebutyl, butylalcohol, alcoholアニソール, アニソールテトラヒドロフラン, テトラヒドロフランヘプタン, ヘプタンethyl, ethylエチルベンゼン, エチルベンゼンアセトン, アセトンエタノール, エタノールanisole, anisoleacetic, aceticxylene, xyleneheptane