GCMS
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike

Advantages and Disadvantages of Substitution of Helium as Carrier Gas in Gas Chromatography by Hydrogen. Part II. – Retention Time and Selectivity

Scientific articles | 2013 | Kvasny PrumyslInstrumentation
GC
Industries
Food & Agriculture
Manufacturer

Summary

Importance of the Topic


Helium shortages and escalating costs have made finding alternative carrier gases essential in gas chromatography. Selecting the right substitute impacts separation speed, efficiency, and selectivity, which is particularly critical in routine analyses such as brewing quality control.

Objectives and Study Overview


This work compares helium, hydrogen, and nitrogen as carrier gases in capillary gas chromatography with respect to retention times and selectivity. It combines theoretical analysis with practical examples focused on volatile and semi-volatile beer flavor compounds.

Methodology and Instrumentation


Theoretical evaluation applied the Golay–Giddings equation to generate van Deemter curves (plate height H vs. carrier gas velocity ū) for H₂, He, and N₂. Practical experiments used J&W DB-WAX columns (60 m×0.32 mm×0.25 µm and 10 m×0.18 mm×0.18 µm) on a programmable gas chromatograph equipped with electronic pneumatic control. Method adaptation between carrier gases was performed using Agilent’s GC Method Translation Software.
  • Carrier gases: helium, hydrogen, nitrogen
  • Capillary columns: J&W DB-WAX (60 m and 10 m variants)
  • Separation modes: isothermal and temperature programming
  • Software: Agilent GC Method Translation

Key Results and Discussion


Van Deemter analysis showed hydrogen’s H vs. ū curve is the shallowest, allowing higher optimal velocities without loss of efficiency. For standard capillaries, hydrogen delivers separations 1.5× faster than helium and 3.3× faster than nitrogen at equivalent efficiency. At equal inlet pressure, hydrogen reduces retention times by approximately 50% compared to helium. Method translation examples demonstrated:
  • 60 m column: constant retention times achieved with hydrogen at ~43% of helium’s inlet pressure; gradient programs translated for hydrogen yield 1.5× faster runs
  • 10 m fast-GC column: hydrogen permits ū = 129 cm/s (1.53× faster than helium), whereas nitrogen slows analysis 2.1×

Benefits and Practical Applications


Using hydrogen as a carrier gas achieves faster analysis cycles, lowers required inlet pressures, and maintains resolution and selectivity—advantages beneficial for high-throughput brewing analysis of flavor compounds.

Future Trends and Potential Applications


Wider adoption of hydrogen in gas chromatography is expected due to helium supply constraints. Future improvements may include advanced pneumatic control for constant linear velocity, enhanced method translation tools, and safety systems for hydrogen handling.

Conclusion


Hydrogen is the optimal substitute for helium in gas chromatography, providing rapid separations at lower pressures without compromising efficiency or selectivity.

References


  • Agilent Technologies: GC Method Translation Software [online]
  • Chromacademy: Translating GC Methods from Helium to Hydrogen [online]
  • David F., Sandra P. (1999). Use of hydrogen as carrier gas in capillary GC. Am. Lab., 31:18–19.
  • Giddings J.C., Seager S.L., Stucki L.R., Stewart G.H. (1960). Plate height in gas chromatography. Anal. Chem., 32:867–870.
  • Golay M.J.E. (1958). Gas Chromatography. Butterworths, London.
  • Horák T., Čulík J., Štěrba K., Olšovská J. (2009). Faster gas chromatography and its utilization in brewing. Part 1 – Theoretical and practical aspects. Kvasny Prum., 55:250–254.
  • Horák T., Čulík J., Štěrba K., Olšovská J. (2013). Advantages and disadvantages of substitution of helium as carrier gas in gas chromatography by hydrogen. Part II – Retention Time and Selectivity. Kvasny Prum., 59:198–202.
  • Korytár P., Matisová E. (2001). Instrumentation for fast gas chromatography. Chem. Listy, 95:783–790.
  • Quimby B.D., Giarrocco V., Klee M.S. (1995). Hewlett-Packard Application Note 228–294.
  • Snyder W.D., Blumberg L. (1992). Proc. 14th Int. Symp. on Capillary Chromatography, Baltimore, May 1992.

Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.

Downloadable PDF for viewing
 

Similar PDF

Toggle
Advantages and Disadvantages of Substitution of Helium as Carrier Gas in Gas Chromatography by Hydrogen. Part III. – Sample Introduction and Detectors
242 Kvasny prum. 59 / 2013 (9) Výhody a nevýhody záměny helia jako nosného plynu v plynové chromatografii za vodík Výhody a nevýhody záměny helia jako nosného plynu v plynové chromatografii za vodík. Část III. – Nástřik vzorku a detektory…
Key words
vodík, vodíknosného, nosnéhodusík, dusíkhelia, heliaplynu, plynuzáměny, záměnyhydrogen, hydrogenplyn, plynplynové, plynovéjako, jakonevýhody, nevýhodyhelium, heliumgas, gasvodíku, vodíkuchromatografii
Advantages and Disadvantages of Substitution of Helium as Carrier Gas in Gas Chromatography by Hydrogen. Part I. – Technical and Safety Aspects
162 Kvasny prum. 59 / 2013 (6) Výhody a nevýhody záměny helia jako nosného plynu v plynové chromatografii za vodík Výhody a nevýhody záměny helia jako nosného plynu v plynové chromatografii za vodík Část I. – Technická a bezpečnostní hlediska…
Key words
plynu, plynuhelia, heliavodík, vodíkzáměny, záměnynosného, nosnéhoplynové, plynovénevýhody, nevýhodyvýhody, výhodychromatografii, chromatografiihelium, heliumjako, jakohydrogen, hydrogengas, gaskyseliny, kyselinytlakových
FASTER GAS CHROMATOGRAPHY AND ITS UTILIZATION IN BREWING. PART 1. – THEORETICAL AND PRACTICAL ASPECTS
250 KVASNÝ PRŮMYSL roč. 55 / 2009 – číslo 9 RYCHLEJŠÍ PLYNOVÁ CHROMATOGRAFIE A JEJÍ VYUŽITÍ V PIVOVARSTVÍ. ČÁST 1. – TEORETICKÉ A PRAKTICKÉ ASPEKTY FASTER GAS CHROMATOGRAPHY AND ITS UTILIZATION IN BREWING. PART 1. – THEORETICAL AND PRACTICAL ASPECTS…
Key words
kvasný, kvasnýprůmysl, průmyslplynu, plynukolony, kolonycolumn, columnrychlost, rychlostchromatografické, chromatografickévodík, vodíkgas, gasnosného, nosnéhoanalýzy, analýzyrychlé, rychlémohly, mohlyproudění, prouděnícarrier
FASTER GAS CHROMATOGRAPHY AND ITS USE IN BREWING. PART 2. – THE DETERMINATION OF HIGH VOLATILE BEER FLAVOURS AFTER HEADSPACE EXTRACTION
268 KVASNÝ PRŮMYSL roč. 55 / 2009 – číslo 10 RYCHLEJŠÍ PLYNOVÁ CHROMATOGRAFIE A JEJÍ VYUŽITÍ V PIVOVARSTVÍ. ČÁST 2. – STANOVENÍ VYSOCE TĚKAVÝCH SENZORICKY AKTIVNÍCH LÁTEK V PIVU PO EXTRAKCI HEADSPACE METODOU FASTER GAS CHROMATOGRAPHY AND ITS USE IN…
Key words
ethylnatý, ethylnatýkvasný, kvasnýoctan, octanprůmysl, průmyslbeer, beerprůtoková, průtokovánosného, nosnéhoflavours, flavourssulphide, sulphideplynu, plynukolona, kolonarychlost, rychlostchromatografické, chromatografickéheadspace, headspacepivu
Other projects
LCMS
ICPMS
Follow us
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike