Optimization of Determination of Dimethyl Sulfide in Wort and Beer
Scientific articles | 2017 | Kvasny PrumyslInstrumentation
Volatile sulfur compounds such as dimethyl sulfide (DMS) play a critical role in beer flavor and aroma. While some DMS contributes positively at low levels, excessive concentrations impart off-flavors reminiscent of cooked vegetables. Accurate monitoring of DMS is therefore essential for quality control in brewing and malt production.
This study aimed to optimize and validate a static headspace gas chromatography method with flame photometric detection (HS-GC-FPD) for quantifying free DMS in wort and beer. Key goals included selecting ideal extraction temperature and time to maximize analytical yield and ensuring method reliability across typical concentration ranges.
The static headspace approach isolates volatilized DMS from liquid matrices without extensive sample manipulation, reducing losses and contamination risks. Extraction parameters were systematically varied:
Validation yielded a quantification limit of 3.5 µg·l⁻¹, combined standard uncertainty of 5.9 % and calibration linearity (R² = 0.9998). Applied to 80 wort and 25 beer samples, DMS ranged from 9.6 to 59.6 µg·l⁻¹ in worts and 6.1 to 34.9 µg·l⁻¹ in beers. Extraction kinetics showed rapid yield increase up to 20 min, plateauing by 30 min. Temperature trials indicated maximal headspace release at 50 °C.
Emerging detectors such as sulfur chemiluminescence and atomic emission promise lower detection limits and linear responses, facilitating multi-analyte profiling. Coupling HS-GC with mass spectrometry can aid in simultaneous identification of diverse volatile sulfur compounds, supporting advanced flavor research and process optimization.
The optimized HS-GC-FPD method offers reliable, sensitive quantification of DMS in wort and beer, with optimized parameters (50 °C, 30 min) enabling streamlined monitoring of this key flavor compound in brewing operations.
GC, HeadSpace
IndustriesFood & Agriculture
ManufacturerThermo Fisher Scientific
Summary
Significance of the Topic
Volatile sulfur compounds such as dimethyl sulfide (DMS) play a critical role in beer flavor and aroma. While some DMS contributes positively at low levels, excessive concentrations impart off-flavors reminiscent of cooked vegetables. Accurate monitoring of DMS is therefore essential for quality control in brewing and malt production.
Objectives and Study Overview
This study aimed to optimize and validate a static headspace gas chromatography method with flame photometric detection (HS-GC-FPD) for quantifying free DMS in wort and beer. Key goals included selecting ideal extraction temperature and time to maximize analytical yield and ensuring method reliability across typical concentration ranges.
Methodology
The static headspace approach isolates volatilized DMS from liquid matrices without extensive sample manipulation, reducing losses and contamination risks. Extraction parameters were systematically varied:
- Extraction time: tested at 10-50 min intervals at 40 °C, optimum at 30 min
- Extraction temperature: tested at 30-70 °C at 30 min, optimum at 50 °C
Used Instrumentation
- Trace GC Ultra gas chromatograph with FPD detector
- GS-Gaspro capillary column (60 m × 0.32 mm)
- Helium carrier gas at 1.5 ml·min⁻¹
- FPD operating at 180 °C with air, hydrogen and nitrogen flows
Main Results and Discussion
Validation yielded a quantification limit of 3.5 µg·l⁻¹, combined standard uncertainty of 5.9 % and calibration linearity (R² = 0.9998). Applied to 80 wort and 25 beer samples, DMS ranged from 9.6 to 59.6 µg·l⁻¹ in worts and 6.1 to 34.9 µg·l⁻¹ in beers. Extraction kinetics showed rapid yield increase up to 20 min, plateauing by 30 min. Temperature trials indicated maximal headspace release at 50 °C.
Benefits and Practical Applications
- Minimal sample preparation preserves analyte integrity and throughput in routine brewery QA/QC
- Robust, cost-effective detection using FPD suitable for complex matrices
- Validated precision and sensitivity within sensory threshold levels
Future Trends and Potential Applications
Emerging detectors such as sulfur chemiluminescence and atomic emission promise lower detection limits and linear responses, facilitating multi-analyte profiling. Coupling HS-GC with mass spectrometry can aid in simultaneous identification of diverse volatile sulfur compounds, supporting advanced flavor research and process optimization.
Conclusion
The optimized HS-GC-FPD method offers reliable, sensitive quantification of DMS in wort and beer, with optimized parameters (50 °C, 30 min) enabling streamlined monitoring of this key flavor compound in brewing operations.
Reference
- Svoboda Z, Mikulíková R, Běláková S, Benešová K. 2017. Optimization of determination of dimethyl sulfide in wort and beer. Kvasny Prum. 63(3):121–125. DOI:10.18832/kp201714
- Scarlata CJ, Ebeler SE. 1999. Headspace solid-phase microextraction for the analysis of dimethyl sulfide in beer. J Agric Food Chem. 47:2505–2508. doi:10.1021/jf990298g
- Wardencki W. 1998. Problems with the determination of environmental sulphur compounds by gas chromatography. J Chromatogr A. 793:1–19. doi:10.1016/S0021-9673(97)00997-7
- Kolb B. 1999. Headspace sampling gas analysis by gas chromatography. J Chromatogr A. 842:163–205. doi:10.1016/S0021-9673(99)00073-4
- Xiao QZ, Xing J, Hu B. 2005. Comparison of headspace and direct singledrop microextraction and headspace solid-phase microextraction for the measurement of volatile sulphur compounds in beer and beverage by gas chromatography with flame photometric detection. J Chromatogr A. 1125:133–137. doi:10.1016/j.chroma.2006.06.096
Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.
Similar PDF
Use of Modern Analytical SPDE and TDAS Methods for the Analysis of Sulphur Volatile Flavors
2011|Thermo Fisher Scientific|Scientific articles
Využití moderních analytických metod SPDE a TDAS při stanovení sirných těkavých látek K VA S N Y P RU M . 57 / 2011 (7–8) 231 Využití moderních analytických metod SPDE a TDAS při stanovení sirných těkavých látek Use of…
Key words
sirných, sirnýchspde, spdetdas, tdaslátek, látektěkavých, těkavýchstanovení, stanovenímoderních, moderníchsulphur, sulphurpři, přivyužití, využitímetod, metodbyly, bylyautomatizované, automatizovanéanalytických, analytickýchdesorpci
Possibilities of Utilization of Modern Sample Preparation Methods for Gas Chromatographic Analysis of Beverages and Especially beer. Part I. – Literature Review
2010||Scientific articles
358 K VA S N Y P RU M . roč. 56 / 2010 – číslo 9 Možnosti využití moderních metod přípravy vzorků pro plynově chromatografické analýzy při analýze nápojů … Možnosti využití moderních metod přípravy vzorků pro plynově chromatografické…
Key words
pivo, pivobeer, beerdetektor, detektorvzorek, vzorekanalyty, analytydms, dmsvíno, vínoextrakce, extrakceecd, ecdliteratura, literaturafid, fidmicroextraction, microextractionaplikace, aplikacevzorků, vzorkůtěkavé
DETERMINATION OF METHIONINE IN MALT
2009|Thermo Fisher Scientific|Scientific articles
310 KVASNÝ PRŮMYSL roč. 55 / 2009 – číslo 11–12 STANOVENÍ METHIONINU VE SLADU DETERMINATION OF METHIONINE IN MALT RENATA MIKULÍKOVÁ, ZDENĚK SVOBODA, KAROLÍNA BENEŠOVÁ, SYLVIE BĚLÁKOVÁ Výzkumný ústav pivovarský a sladařský, Sladařský ústav, Mostecká 7, CZ-614 00 Brno Research…
Key words
methioninu, methioninumethionine, methioninesladu, sladukvasný, kvasnýprůmysl, průmyslmalt, maltbojos, bojosbyla, bylasirných, sirnýchvoda, vodamalts, maltsdimethyl, dimethylbrani, branihrubèice, hrubèicehrubčice
Monitoring of Methionine in Czech and Foreign Beers
2011|Thermo Fisher Scientific|Scientific articles
8 K VA S N Y P RU M . 57 / 2011 (1) Sledování methioninu v českých a zahraničních pivech Sledování methioninu v českých a zahraničních pivech Monitoring of Methionine in Czech and Foreign Beers RENATA MIKULÍKOVÁ1, ZDENĚK SVOBODA1,…
Key words
methioninu, methioninumethionine, methioninepivech, pivechzahraničních, zahraničníchčeských, českýchsledování, sledováníbeers, beersmebak, mebaksirné, sirnépiv, pivpivu, pivubeer, beerfeldschlöschen, feldschlöschenediční, edičnílagers