GCMS
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike

Artificial Photosynthesis -Photocatalyst Characterization and Product Quantification

Brochures and specifications | 2024 | ShimadzuInstrumentation
GC, GC/MSD, GC/SQ, Ion chromatography, UV–VIS spectrophotometry
Industries
Environmental, Food & Agriculture
Manufacturer
Shimadzu

Summary

Importance of the Topic


Artificial photosynthesis replicates natural photosynthesis to convert solar energy into valuable chemicals such as hydrogen, carbon monoxide, methanol, formic acid and hydrocarbons. It promises low-carbon fuel production and CO₂ utilization, supporting the transition to a carbon-neutral society. High conversion efficiency and cost-effective photocatalysts are critical for practical adoption.

Objectives and Study Overview


This whitepaper surveys analytical solutions developed by Shimadzu for catalyst characterization and product quantification in artificial photosynthesis systems. It addresses three key areas:
  • Evaluation of physical properties of photocatalysts
  • Excited-state and in situ measurements
  • Quantification of reaction products

Used Instrumentation


  • UV-Vis spectrophotometer with integrating sphere
  • Laser diffraction particle size analyzer
  • Dynamic particle image analysis system
  • Scanning probe microscope (AFM/KPFM) with light irradiation unit
  • Photoreaction evaluation system (Lightway)
  • Gas chromatograph mass spectrometer (GC-MS)
  • Transportable gas analyzer (non-dispersive IR)
  • Gas chromatograph with TCD and BID detectors
  • High-speed, application-specific gas chromatograph
  • Ion chromatograph with post-column buffering
  • Gas chromatograph for formic acid using phosphoric acid treatment

Methodology


Physical characterization included band-gap measurement via diffuse reflectance UV-Vis to distinguish anatase and rutile TiO₂, and particle-size distribution analysis by laser diffraction and image analysis. Excited-state studies employed KPFM mapping under UV illumination to visualize charge distribution on Au/TiO₂ assemblies, and in situ quantum-yield and intermediate detection using the Lightway system with calibrated LED illumination and spectrophotometry. Product quantification utilized GC-MS with isotope labeling to confirm CO origin, transportable IR analyzers for real-time gas monitoring, GC with TCD/BID for CO, H₂ and hydrocarbons, high-speed GC for rapid C₁–C₅ gas profiling, ion chromatography for formate and acetate in aqueous solutions, and GC-BID with phosphoric-acid-treated columns for formic acid in organic solvents.

Main Results and Discussion


Band-gap analysis revealed distinct optical properties of anatase versus rutile TiO₂. Anatase exhibited narrower particle-size variation, correlating with catalytic performance. KPFM under illumination showed photogenerated electrons localized on Au nanoparticles. The Lightway system determined a 40% apparent quantum yield for CO generation and directly observed a 530 nm intermediate. Isotope-labeled GC-MS confirmed reaction products derived from introduced ¹³CO₂. On-site transportable analysis tracked catalyst activity and degradation at different temperatures. GC-BID simultaneously monitored CO and H₂ formation kinetics. A high-speed GC system completed multi-component gas analysis including H₂S in under 6 minutes with RSD < 0.5%. Ion chromatography achieved sensitive detection of formate and acetate with linear response from 2.5 to 20 mg/L. Phosphoric acid treatment of GC inserts and columns enhanced formic acid peak shape and sensitivity. Combined Lightway and GC-TCD measurements validated linear H₂ quantum-yield assessment.

Practical Applications and Benefits


These analytical tools enable rapid screening of photocatalyst materials, mechanistic insights into charge transfer, on-site process monitoring and reliable quantification across gaseous and liquid products. Such capabilities accelerate catalyst optimization, reactor design and scale-up for sustainable solar fuel production.

Future Trends and Potential Applications


Emerging ultrafast and operando spectroscopies will further elucidate charge-carrier dynamics. Integration of machine-learning for data analysis and autonomous screening platforms will speed discovery of high-performance photocatalysts. Development of portable, high-throughput systems could support decentralized solar fuel generation and environmental monitoring applications.

Conclusion


Comprehensive analytical solutions spanning photocatalyst characterization, excited-state monitoring and product quantification form a robust framework for advancing artificial photosynthesis. By combining advanced spectroscopic, microscopic and chromatographic techniques, researchers can optimize catalytic systems and move closer to practical, carbon-neutral solar fuel technologies.

Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.

Downloadable PDF for viewing
 

Similar PDF

Toggle
GC Columns Installation Guide
Innovative Chromatography Solutions GC Columns Installation Guide GC Column Installation 气相色谱柱安装指南 Instructions pour l’installation d’une colonne capillaire Einbau einer GC-Kapillarsäule Istruzioni per l’installazione di una colonna capillare Instalación de Columnas Capilares GCカラム取付け手順 www.restek.com/gc 2 GC Column Installation Instructions The Restek…
Key words
カラム, カラムcolonna, colonnacolonne, colonnedella, dellarestek, restekcolumna, columnader, derpour, pouruna, unapara, paradel, delキャリヤガス, キャリヤガスcapillaire, capillaireフェルール, フェルールtempérature
Shimadzu GC Columns Installation Guide
ERAD-0001-9079 Columns Installation Guide 气相色谱柱安装指南 Instructions pour l’installation d’une colonne capillaire Einbau einer GC-Kapillarsäule Istruzioni per l’installazione di una colonna capillare Instalación de Columnas Capilares www.shimadzu.com/an 2 ERAD-0001-9079 GC Column Installation Instructions The Shimadzu Innovations and Technical Services specialists have…
Key words
カラム, カラムcolonna, colonnacolonne, colonnedella, dellacolumna, columnader, derpour, pourpara, paravecteur, vecteurcapillaire, capillaireuna, unatempérature, températurel’installazione, l’installazioneauf, aufsäulen
TurboVap (Safety Translations)
TurboVap (Safety Translations)
2019|Biotage|Manuals
TurboVap ® Safety Translations Contents TurboVap ® Safety Translations CONTENTS 1 3 6 9 12 15 2 安全 安全性について Sécurité Seguridad Sicherheitshinweise Sicurezza TurboVap Safety Translations | © Biotage 2019 ® 安全 安全 注意:这是英语版“TurboVap Installation and Safety”文档中 “Safety”一章的翻译。如有任何出入,以英语原版为准。 ® 使用目的…
Key words
システム, システムbiotage, biotagesistema, sistemadel, deldes, desund, undsystème, systèmeles, lesder, derturbovap, turbovapdie, diesie, sielas, lasrohs, rohscon
Inlet Liner Removal Tool (MANUAL)
ERAD-0001-9083A P/N:227-35032-01 Inlet Liner Removal Tool INSTRUCTION MANUAL The Inlet Liner Removal Tool is designed to simplify and efficiently facilitate the removal of gas chromatography (GC) inlet liners. Applicable liner outer diameter : 5 mm Recommended operating temperature : Room…
Key words
インサート, インサートリング, リングインジェクションポート, インジェクションポートツール, ツールliner, linerインサートリムーバルツール, インサートリムーバルツールピンセット, ピンセットplease, pleasetweezers, tweezersring, ringport, portremoval, removalcareful, carefulガスクロマトグラフ, ガスクロマトグラフガラスインサー
Other projects
LCMS
ICPMS
Follow us
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike