GCMS
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike
Organizer
Separation Science
Separation Science
Separation Science is the leading online resource for methods, applications, troubleshooting and training in chromatography and mass spectrometry.
Tags
Thermal desorption
GC/MS
Sample prep
Pyrolysis
LinkedIn Logo

Snow DUMP-ing: Using Direct TD–GC–MS to Tackle Urban Snow and Microplastic Pollution

RECORD | Already taken place Tu, 18.11.2025
Learn how TD–GC–MS streamlines the analysis of complex particulate samples, reduces environmental footprint, and expands opportunities in microplastic and environmental monitoring.
Go to the webinar
SeparationScience: Snow DUMP-ing: Using Direct TD–GC–MS to Tackle Urban Snow and Microplastic Pollution
SeparationScience: Snow DUMP-ing: Using Direct TD–GC–MS to Tackle Urban Snow and Microplastic Pollution

Urban snow is an efficient scavenger of atmospheric contaminants—from polycyclic aromatic hydrocarbons (PAHs) generated by traffic emissions, to microplastics and associated additives from tyre wear. In Arctic cities such as Tromsø, Norway, large volumes of this contaminated snow are dumped into the sea each year, yet the environmental impacts remain poorly understood.

In this webinar, Dr Cleo Davie-Martin (NILU, Norway) will present findings from the DUMP project (Direct analysis of Urban snow particulates for traffic-related microplastic additives and polycyclic aromatic hydrocarbons), which developed a solvent free, direct thermal desorption (TD) GC-MS approach for analysing particulates in snow, eliminating toxic solvents and reducing sample prep time. Cleo will discuss method optimization, including the use of analyte protectants and desorption aids to improve sensitivity, showing how PAH concentrations vary with traffic intensity.

Caroline Widdowson (Markes International) will showcase a novel TD–GC–MS methodology to track microplastics through all stages of a wastewater treatment plant, achieving large sample sizes, high reproducibility, and greater system robustness compared with traditional Py-GC-MS.

Together, these studies highlight how TD–GC–MS can streamline the analysis of complex particulate matrices, reduce environmental impact, and open up new opportunities for environmental monitoring and microplastic research.

By attending this webinar, you will learn:
  • Direct TD–GC–MS can reduce sample preparation time and avoid toxic solvents.
  • Analyte protectants and desorption aids improve sensitivity and reproducibility.
  • The technique is applied to real-world challenges, from Arctic snow to microplastics in food and environmental samples.

Presenter: Cleo Davie-Martin (Senior scientist, NILU)

Dr Cleo Davie-Martin is a senior scientist at NILU in Tromsø, Norway. She holds a PhD in Environmental and Analytical Chemistry from the University of Otago, where she studied volatilization processes affecting the distribution of semi-volatile organic contaminants (SVOCs). Her research spans bioremediation of PAHs, biogenic VOC emissions from the Arctic tundra and marine environments, and environmental monitoring of pollutants. Cleo has extensive experience in analytical method development and quantification across diverse contaminant classes and environmental matrices, working with techniques such as thermal desorption (TD), gas chromatography–mass spectrometry (GC-MS), and proton-transfer-reaction mass spectrometry (PTR-MS). At NILU, she also contributes to the digitalization and management of environmental monitoring data.

Presenter: Caroline Widdowson (Material Emissions Specialist, Markes International)

Caroline works for Markes International, an advanced analytical instrument manufacturer. Having completed her chemistry degree at Cardiff University, she followed on with a Ph.D. in Organic Chemistry then an MBA. As part of her current role, Caroline advises manufacturers, test laboratories, and research institutes on equipment needed to monitor interior environments and study chemical emissions from materials. Caroline is the Chair of the UK BSi committee developing standard methods for the sampling and analysis of chemicals from products and materials (BSi EH2/5); she also participates in ISO, ASTM, and CEN standards and national regulatory committees relating to this area.

Separation Science
LinkedIn Logo
 

Related content

Analysis of Aroma Components in Apples Using the Smart Aroma Database

Applications
| 2026 | Shimadzu
Instrumentation
GC/MSD, GC/SQ, HeadSpace
Manufacturer
Shimadzu
Industries
Food & Agriculture

Analysis of Acetaldehyde and Limonene in Recycled PET Using an HS-GCMS System (Carrier Gas: H2)

Applications
| 2026 | Shimadzu
Instrumentation
GC/MSD, GC/SQ, HeadSpace
Manufacturer
Shimadzu
Industries
Energy & Chemicals

What Causes GC Capillary Column Performance Degradation, and How Can I Prevent It?

Technical notes
| 2026 | Agilent Technologies
Instrumentation
Consumables, GC columns
Manufacturer
Agilent Technologies
Industries
Other

Aromatic Component Analysis of Gasoline According to ASTM D5580 Using the Brevis GC- 2050 Gas Chromatograph

Applications
| 2025 | Shimadzu
Instrumentation
GC
Manufacturer
Shimadzu
Industries
Energy & Chemicals

Micro GC Analysis of Permanent Gas Impurities in PEM Fuel Cell-Grade Hydrogen

Applications
| 2025 | Agilent Technologies
Instrumentation
GC
Manufacturer
Agilent Technologies
Industries
Energy & Chemicals
Other projects
LCMS
ICPMS
Follow us
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike