GCMS
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike
Organizer
Bruker
Bruker
Bruker offers the world’s most comprehensive range of scientific instrumentation available under one brand - a brand synonymous with excellence, innovation and quality.
Tags
FTIR Spectroscopy
Microscopy
LinkedIn Logo

NanoIR Spectroscopy & Imaging: Recent Developments and Applications

RECORD | Already taken place Su, 1.1.2023
Find out more about Bruker's latest nano IR product updates and see real-time demonstrations of the new Surface Sensitive mode and new AFM-IR platforms for Bruker's Anasys nanoIR systems.
Go to the webinar
Bruker: NanoIR Spectroscopy & Imaging: Recent Developments and Applications
Bruker: NanoIR Spectroscopy & Imaging: Recent Developments and Applications

By combining infrared spectroscopy with atomic force microscopy (AFM-IR), it is possible to perform chemical analysis and compositional mapping with a spatial resolution down to 10 nm, which greatly surpasses standard optical diffraction limits. During this 2-hour event, our speakers explore:

  • Origins of the AFM-IR technique
  • Recent advances in AFM-IR technology
  • Applications that can benefit from AFM-IR spectroscopy—especially life sciences and environmental chemistry

Bruker Application Scientist Dr. Cassandra Phillips hosts the workshop and live demos, providing an overview of Bruker's latest nanoIR product updates. 

Watch this webinar to:

  • Hear distinguished guest speakers discuss their work on AFM-IR with the nano-IR platform
  • Experience Bruker's new patented Surface Sensitive mode
  • Become familiar with Bruker's new AFM-IR platforms

Presenter: Xiaoji Xu, Ph.D.

Presentation: NanoIR through PeakForce Infrared (PFIR) Microscopy

Here, Xiaoji Xu, Ph.D. (Lehigh University) introduces the novel PFIR method of AFM-IR developed at Lehigh University. This method of label-free chemical nanoscopy is based on the mechanical detection of photothermal response by AFM operated in PeakForce Tapping mode and ultimately can achieve a higher spatial resolution (sub-10 nm) and provide more rich chemical information than many of the existing tools we use for chemical imaging—or imaging in general—while also providing greater flexibility in applicability to samples in both air and liquid.

In addition to providing a review of the strengths and benefits of PFIR as they relate to foundational AFM-IR and PeakForce Tapping principles and capabilities, the presentater explores and provides detailed, real-world examples of PFIR's applicability to a broad range of sample types and experimental settings.

Presenter: Dmitry Kurouski, Ph.D.

Presentation: Biology at the Nanoscale: From Viruses to Amyloids

In this presentation, Dmitry Kurouski, Ph.D. (Texas A&M University) showcases his team's research and findings using TERS and AFM-IR to investigate viruses, viral particles, and alpha-synuclein oligomers. Topics of this discussion range from an exploration of how IR/AFMIR spectroscopy reveals a variety of infrared spectra in biological samples that are otherwise inaccessible by traditional Raman microscopy methods, to a detailed presentation of the team's findings via a combination of AFM-IR and TERS about changes observed in the secondary structural organization and surface structure information of populations of oligomers relative to their impact on the development of Parkinson's disease.

These two technologies possess different capabilities that demonstrate strong complementarity in terms of both the chemical information available and the achievable probing depth.

Presenter: Cassandra Philips, Ph.D.

Presentation: Quantitative Demonstration of Surface Sensitivity with nanoIR3

The presenter conducts a profile analysis of a PMMA wedge sample in both Resonance enhanced and Surface Sensitivity modes, then demonstrate the analytical process for data collected in Surface Sensitivity mode.

Comparison of the data outputs of various operational modes demonstrates that using the same probe and sample, users can switch from looking at bulk measurements (where the signal increases linearly with the thickness) to measurements with a surface sensitivity on the order of 15 nm just by adjusting the parameters.

Surface Sensitivity mode enables measurement of the top layer of a sample with significantly improved accuracy over other operational modes, as it collects data only from the surface and not from the absorbing material beneath it. 

Presentation: Demonstration: New Platforms for AFM-IR

The presenter introduces the unique capabilities of a new Bruker platform for AFM-IR imaging.

Looking at a sample of PMMA beads in epoxy resin, the presenter demonstrates the new platform's capability to achieve higher acuity and operate at higher scan speeds than other nanoIR systems. Its integration with both Bruker's most advanced AFM controller and legacy Tapping Mode imaging capabilities are explored.

Additionally, the presenter showcases the ability to switch wavenumber and reconfigure laser power mid-scan (to look at both the epoxy band and the carbonyl band of the sample), as well as the platform's unique capacity to switch between sample-scanning and tip-scanning configurations, enabling investigation of the chemical composition and mechanical properties of the same sample using the same probe.

Bruker
LinkedIn Logo
 

Related content

Analysis of Aroma Components in Apples Using the Smart Aroma Database

Applications
| 2026 | Shimadzu
Instrumentation
GC/MSD, GC/SQ, HeadSpace
Manufacturer
Shimadzu
Industries
Food & Agriculture

Analysis of Acetaldehyde and Limonene in Recycled PET Using an HS-GCMS System (Carrier Gas: H2)

Applications
| 2026 | Shimadzu
Instrumentation
GC/MSD, GC/SQ, HeadSpace
Manufacturer
Shimadzu
Industries
Energy & Chemicals

What Causes GC Capillary Column Performance Degradation, and How Can I Prevent It?

Technical notes
| 2026 | Agilent Technologies
Instrumentation
Consumables, GC columns
Manufacturer
Agilent Technologies
Industries
Other

Aromatic Component Analysis of Gasoline According to ASTM D5580 Using the Brevis GC- 2050 Gas Chromatograph

Applications
| 2025 | Shimadzu
Instrumentation
GC
Manufacturer
Shimadzu
Industries
Energy & Chemicals

Micro GC Analysis of Permanent Gas Impurities in PEM Fuel Cell-Grade Hydrogen

Applications
| 2025 | Agilent Technologies
Instrumentation
GC
Manufacturer
Agilent Technologies
Industries
Energy & Chemicals
Other projects
LCMS
ICPMS
Follow us
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike