DETERMINATION OF AROMATIC ALCOHOLS IN BEER BY SOLID PHASE EXTRACTION AND DETECTION WITH GAS CHROMATOGRAPHY IN COMBINATION WITH MASS SPECTROMETRY (GC-MS) Part I. – Creation and validation of the analytical method
Scientific articles | 2009 | Kvasny PrumyslInstrumentation
Beer contains dozens of volatile compounds that shape its aroma and flavor profile. Among these, aromatic alcohols such as 2-phenylethanol, guaiacol and its derivatives, tyrosol and tryptophol have significant sensory impact even at low concentrations. Reliable quantification of these compounds is essential for quality control, research into beer flavor formation and optimization of brewing processes.
The study aimed to develop and validate a fast, robust analytical method for determining key aromatic alcohols in beer. The focus was on creating a selective isolation procedure using solid-phase extraction (SPE) coupled with sensitive detection by gas chromatography–mass spectrometry (GC-MS). Performance characteristics such as linearity, precision, accuracy and detection limits were evaluated.
The proposed workflow combines SPE on LiChrolut EN cartridges with GC-MS analysis in selected-ion monitoring (SIM) mode. Key steps include:
The GC-MS system (Trace GC Ultra – DSQ II) was equipped with either a 30 m RTx-5Sil MS or a 50 m CP-Sil 8 CB capillary column. Oven temperature programs were optimized for each column to achieve baseline separation.
The method exhibited excellent linearity (r > 0.995) over concentration ranges covering typical beer levels. Repeatability (RSD < 7%) and intralaboratory reproducibility (RSD < 15%) were satisfactory for all analytes. Limits of detection ranged from 0.0001 to 0.005 mg/L in sample. The RTx-5Sil MS column provided sharper peaks and reduced analysis time compared to the longer CP-Sil 8 CB column, especially for tyrosol and tryptophol. Application to commercial lagers and nonalcoholic beers confirmed the method’s sensitivity and selectivity, with SIM mode significantly improving signal-to-noise ratios.
This SPE-GC-MS procedure offers brewers and analytical laboratories a reliable tool for:
The fast sample preparation and low detection limits support quality assurance and research needs.
Emerging directions include:
Advances in column technology and tandem MS detection will further enhance selectivity and lower quantification limits.
The validated SPE-GC-MS method provides a robust, sensitive and practical approach to quantify key aromatic alcohols in beer. Its strong performance in terms of linearity, precision, accuracy and low detection limits makes it well suited for brewery quality control, sensory research and product optimization.
GC/MSD, GC/SQ
IndustriesFood & Agriculture
ManufacturerThermo Fisher Scientific
Summary
Importance of the topic
Beer contains dozens of volatile compounds that shape its aroma and flavor profile. Among these, aromatic alcohols such as 2-phenylethanol, guaiacol and its derivatives, tyrosol and tryptophol have significant sensory impact even at low concentrations. Reliable quantification of these compounds is essential for quality control, research into beer flavor formation and optimization of brewing processes.
Objectives and article overview
The study aimed to develop and validate a fast, robust analytical method for determining key aromatic alcohols in beer. The focus was on creating a selective isolation procedure using solid-phase extraction (SPE) coupled with sensitive detection by gas chromatography–mass spectrometry (GC-MS). Performance characteristics such as linearity, precision, accuracy and detection limits were evaluated.
Methodology and instrumentation
The proposed workflow combines SPE on LiChrolut EN cartridges with GC-MS analysis in selected-ion monitoring (SIM) mode. Key steps include:
- Degassing beer and adjusting pH to 8.5 with NaOH
- Adding an internal standard (4-ethylphenol) and loading onto SPE
- Conditioning SPE with methanol and alkaline water
- Eluting analytes with ethyl acetate
- Concentrating eluate under nitrogen and injecting 1 µL into GC-MS
The GC-MS system (Trace GC Ultra – DSQ II) was equipped with either a 30 m RTx-5Sil MS or a 50 m CP-Sil 8 CB capillary column. Oven temperature programs were optimized for each column to achieve baseline separation.
Used instrumentation
- GC-MS: Trace GC Ultra – DSQ II
- Columns: RTx-5Sil MS (30 m×0.25 mm×0.25 µm) and CP-Sil 8 CB (50 m×0.25 mm×0.25 µm)
- SPE manifold with LiChrolut EN cartridges
- Vacuum pump and nitrogen concentrator
- Ultrasound bath, centrifuge, pH meter
Main results and discussion
The method exhibited excellent linearity (r > 0.995) over concentration ranges covering typical beer levels. Repeatability (RSD < 7%) and intralaboratory reproducibility (RSD < 15%) were satisfactory for all analytes. Limits of detection ranged from 0.0001 to 0.005 mg/L in sample. The RTx-5Sil MS column provided sharper peaks and reduced analysis time compared to the longer CP-Sil 8 CB column, especially for tyrosol and tryptophol. Application to commercial lagers and nonalcoholic beers confirmed the method’s sensitivity and selectivity, with SIM mode significantly improving signal-to-noise ratios.
Benefits and practical application
This SPE-GC-MS procedure offers brewers and analytical laboratories a reliable tool for:
- Routine monitoring of sensory-active aromatic alcohols
- Profiling beer aroma for product development
- Comparative studies across beer styles and processing conditions
The fast sample preparation and low detection limits support quality assurance and research needs.
Future trends and potential applications
Emerging directions include:
- Automation of SPE for higher throughput
- Use of isotope-dilution mass spectrometry for absolute quantification
- Integration with solid-phase microextraction (SPME) for comprehensive volatile analysis
- Extension to novel beer styles, specialty malts and dealcoholized products
Advances in column technology and tandem MS detection will further enhance selectivity and lower quantification limits.
Conclusion
The validated SPE-GC-MS method provides a robust, sensitive and practical approach to quantify key aromatic alcohols in beer. Its strong performance in terms of linearity, precision, accuracy and low detection limits makes it well suited for brewery quality control, sensory research and product optimization.
References
- Čulík J. et al. Kvasny Prum. 55, 2009; Determination of aromatic alcohols in beer by SPE and GC-MS. Part I: Method development and validation.
- Dufour J-P. et al. J. Am. Soc. Brew. Chem. 52, 2002; Stable isotope dilution analysis of beer aromatic alcohols.
- Saegusa K. et al. Biomed. Chromatogr. 7, 1993; GC-MS determination of guaiacol and catechol.
- Vanderhaegen B. et al. Monatsschr. Brauwiss. 58, 2005; Purge and trap GC-MS of beer flavor compounds.
- Almeida C. et al. J. Agric. Food Chem. 54, 2006; 1H NMR profiling of beer composition.
Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.
Similar PDF
DETERMINATION OF AROMATIC ALCOHOLS IN BEER USING THE SOLID PHASE EXTRACTION (SPE) FOLLOWED BY GAS CHROMATOGRAPHY- MASS SPECTROMETRY (GC- MS). PART II. – THE CONTENT OF AROMATIC ALCOHOLS IN CZECH BEERS
2009|Thermo Fisher Scientific|Scientific articles
KVASNÝ PRŮMYSL roč. 55 / 2009 – číslo 10 273 STANOVENÍ AROMATICKÝCH ALKOHOLŮ V PIVU S VYUŽITÍM METODY EXTRAKCE NA PEVNÉ FÁZI (SPE) A DETEKCE POMOCÍ SPOJENÍ PLYNOVÉ CHROMATOGRAFIE S HMOTNOSTNÍ SPEKTROMETRIÍ (GC-MS). ČÁST II. – OBSAH AROMATICKÝCH ALKOHOLŮ V…
Key words
beer, beeraromatických, aromatickýchalkoholů, alkoholůbeers, beerskvasný, kvasnýtyrosol, tyrosolprůmysl, průmyslalcohols, alcoholsextrakce, extrakceeugenol, eugenolpivu, pivuspojení, spojenípřístrojovém, přístrojovémtryptofol, tryptofolpevné
FASTER GAS CHROMATOGRAPHY AND ITS UTILIZATION IN BREWING. PART 3. – THE DETERMINATION OF SOME LOW VOLATILE BEER FLAVOURS
2009||Scientific articles
304 KVASNÝ PRŮMYSL roč. 55 / 2009 – číslo 11–12 RYCHLEJŠÍ PLYNOVÁ CHROMATOGRAFIE A JEJÍ VYUŽITÍ V PIVOVARSTVÍ. ČÁST 3. – STANOVENÍ VYBRANÝCH SEMIVOLATILNÍCH SENZORICKY AKTIVNÍCH LÁTEK V PIVU FASTER GAS CHROMATOGRAPHY AND ITS UTILIZATION IN BREWING. PART 3. –…
Key words
kyselina, kyselinafatty, fattykvasný, kvasnýacid, acidprůmysl, průmyslacids, acidsmastných, mastnýchprůtoková, průtokovákyselin, kyselinkonvenční, konvenčnístanovení, stanovenínosného, nosnéhopivu, pivuvnitřní, vnitřníchain
Possibilities of Utilization of Modern Sample Preparation Methods for Gas Chromatographic Analysis of Beverages and Especially beer. Part I. – Literature Review
2010||Scientific articles
358 K VA S N Y P RU M . roč. 56 / 2010 – číslo 9 Možnosti využití moderních metod přípravy vzorků pro plynově chromatografické analýzy při analýze nápojů … Možnosti využití moderních metod přípravy vzorků pro plynově chromatografické…
Key words
pivo, pivobeer, beerdetektor, detektorvzorek, vzorekanalyty, analytydms, dmsvíno, vínoextrakce, extrakceecd, ecdliteratura, literaturafid, fidmicroextraction, microextractionaplikace, aplikacevzorků, vzorkůspme
Advantages and Disadvantages of Substitution of Helium as Carrier Gas in Gas Chromatography by Hydrogen. Part III. – Sample Introduction and Detectors
2013||Scientific articles
242 Kvasny prum. 59 / 2013 (9) Výhody a nevýhody záměny helia jako nosného plynu v plynové chromatografii za vodík Výhody a nevýhody záměny helia jako nosného plynu v plynové chromatografii za vodík. Část III. – Nástřik vzorku a detektory…
Key words
vodík, vodíknosného, nosnéhodusík, dusíkhelia, heliaplynu, plynuzáměny, záměnyhydrogen, hydrogenplyn, plynplynové, plynovéjako, jakonevýhody, nevýhodyhelium, heliumgas, gasvodíku, vodíkuchromatografii