GCMS
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike

Main Gas Chromatographic Detectors Used in Brewing Analytics

Scientific articles | 2011 | Kvasny PrumyslInstrumentation
GC
Industries
Food & Agriculture
Manufacturer

Summary

Significance of the Topic


Gas chromatography is a cornerstone technique in brewing analytics for quantifying flavor‐active compounds and potential contaminants. Its sensitivity and selectivity allow brewers and maltsters to monitor final product quality and to optimize new processing methods.

Objectives and Study Overview


This article reviews the fundamental operating principles, strengths and limitations of the three most common gas chromatographic detectors in brewing analytics: flame ionization detector (FID), electron capture detector (ECD) and flame photometric detector (FPD). It compares their dynamic range, selectivity, temperature effects and practical considerations for routine beer analysis.

Methodology and Instrumentation


The authors present a theoretical and practical evaluation of each detector type, drawing on official analytical methods (EBC, MEBAK, IOB, ASBC) and on in‐laboratory experiments. Detector performance is illustrated by response profiles for representative analytes under varying operating conditions.

Instrumentation Used


  • Thermo Scientific Trace GC Ultra gas chromatograph equipped with FID, ECD and FPD modules.
  • Nickel‐63 radioactive source for ECD.
  • Standard carrier gases: helium or nitrogen, hydrogen for FID and FPD combustion, air or oxygen for FID, and high‐purity nitrogen as ECD make‐up gas.

Main Findings and Discussion


  • FID provides a wide linear range and universal carbon response; optimal electrode spacing and voltage ensure complete ion collection with minimal temperature dependence.
  • ECD offers high sensitivity and selectivity toward electronegative compounds; detector temperature critically influences dissociative vs. non-dissociative capture mechanisms, requiring careful optimization and gas purity to maintain standing current.
  • FPD enables selective detection of sulfur and phosphorus compounds by monitoring 394 nm and 526 nm emissions. Its non-linear square-law response in sulfur mode demands stable retention times and controlled flame conditions to minimize noise.

Benefits and Practical Applications


  • Routine determination of alcohols, esters, aldehydes and sulfur volatiles for quality control.
  • Trace analysis of vicinal diketones, halogenated hydrocarbons, chlorophenols and process by‐products.
  • Selective detection simplifies sample preparation and reduces chromatographic separation requirements.

Future Trends and Applications


The decreasing cost and growing availability of mass spectrometric detectors will expand multi‐detector and hyphenated techniques. Advances in selective detection chemistry and miniaturized GC systems promise faster throughput and on-site brewing analytics.

Conclusion


Despite innovations in detector technology, FID, ECD and FPD remain fully adequate for routine brewing analytics. Their well-understood operation, reliability and compliance with official methods ensure continued widespread use in quality assurance and process development.

References


  1. European Brewery Convention, Analytica EBC, Method 9.24.2, 5th update, 2005.
  2. Institute of Brewing, IOB Methods of Analysis, Vol. 1, Method 9.32, 1997.
  3. MEBAK, Brautechnische Analysenmethoden, Band II, Method 1.1.1, 1996.
  4. American Society of Brewing Chemists, ASBC Methods of Analysis, Beer 29, 2009.
  5. Čulík J., Figalla K., Horák T., Kellner V.: Determination of higher sensory alcohols in beer by SPE-GC, Kvasny Prum. 45, 1999.
  6. Horák T., Čulík J., Jurková M., Čejka P., Kellner V.: Fatty acids in beer by SPME, Kvasny Prum. 51, 2005.
  7. European Brewery Convention, Analytica EBC, Method 9.24.2 – Vicinal diketones, 2005.
  8. Institute of Brewing, IOB Method 9.22 – Vicinal diketones, 1997.
  9. Institute of Brewing, IOB Method 9.23 – Vicinal diketones, 1997.
  10. MEBAK, Method 1.2.1 – Vicinal diketones, 1996.
  11. ASBC, Method 25E – Diacetyl, 2009.
  12. Horák T. et al.: Vicinal diketones by SPME, Kvasny Prum. 47, 2001.
  13. MEBAK, Method 1.2.4 – Acetoin, 1996.
  14. Čulík J. et al.: Halogenated hydrocarbons in beer by headspace, Kvasny Prum. 41, 1995.
  15. Horák T. et al.: Chlorinated aliphatic hydrocarbons in beer, Kvasny Prum. 45, 1999.
  16. Horák T. et al.: SPE for chlorophenols in brewing water, Kvasny Prum. 54, 2008.
  17. Čulík J. et al.: Disinfection by-products in brewing water and beer, Kvasny Prum. 56, 2010.
  18. Horák T. et al.: PAHs and PCBs in beer, Kvasny Prum. 45, 1999.
  19. Institute of Brewing, IOB Method 9.33 – Dimethyl sulphide, 1997.
  20. MEBAK, Method 1.3.1 – Free DMS in wort and beer, 1996.
  21. MEBAK, Method 1.3.2 – DMS precursors in wort, 1996.
  22. MEBAK, Method 1.3.3 – DMS precursors in malt, 1996.
  23. Hill P. G., Smith R. M.: Sulphur compounds in beer by SPME-GC-PFPD, J. Chromatogr. A 872, 2000.
  24. Xiao Q. et al.: Comparison of HS-SDME and HS-SPME for volatile sulphur in beer, J. Chromatogr. A 1125, 2006.
  25. Harley J., Pretorious V.: Flame ionization detector, Nature 181, 1958.
  26. McWilliams I. G., Dewer R. A.: Gas Chromatography 1958, Butterworths.
  27. Ongkiehong L.: Gas Chromatography 1960, Butterworths.
  28. Desty D. H. et al.: Gas Chromatography 1960, Butterworths.
  29. Calcote H. F., King I. R.: Combustion studies, Fifth Symposium, 1955.
  30. Schuler K. E., Weber J. J.: J. Chem. Phys. 22, 1954.
  31. Swan D. F. K.: Three Selective Detectors, Pye Unican, 1975.
  32. Grant D. W.: Gas Chromatography 1958, Butterworths.

Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.

Downloadable PDF for viewing
 

Similar PDF

Toggle
Advantages and Disadvantages of Substitution of Helium as Carrier Gas in Gas Chromatography by Hydrogen. Part III. – Sample Introduction and Detectors
242 Kvasny prum. 59 / 2013 (9) Výhody a nevýhody záměny helia jako nosného plynu v plynové chromatografii za vodík Výhody a nevýhody záměny helia jako nosného plynu v plynové chromatografii za vodík. Část III. – Nástřik vzorku a detektory…
Key words
vodík, vodíknosného, nosnéhodusík, dusíkhelia, heliaplynu, plynuzáměny, záměnyhydrogen, hydrogenplyn, plynplynové, plynovéjako, jakonevýhody, nevýhodyhelium, heliumgas, gasvodíku, vodíkuchromatografii
Possibilities of Utilization of Modern Sample Preparation Methods for Gas Chromatographic Analysis of Beverages and Especially beer. Part I. – Literature Review
358 K VA S N Y P RU M . roč. 56 / 2010 – číslo 9 Možnosti využití moderních metod přípravy vzorků pro plynově chromatografické analýzy při analýze nápojů … Možnosti využití moderních metod přípravy vzorků pro plynově chromatografické…
Key words
pivo, pivobeer, beerdetektor, detektorvzorek, vzorekanalyty, analytydms, dmsvíno, vínoextrakce, extrakceecd, ecdliteratura, literaturafid, fidmicroextraction, microextractionaplikace, aplikacevzorků, vzorkůspme
Head-space Analysis in Brewing Analytics
2 K VA S N Y P R U M . 58 / 2012 (1) Head-space analýzy v pivovarské analytice Head-space analýzy v pivovarské analytice Head-space Analysis in Brewing Analytics TOMÁŠ HORÁK, JIŘÍ ČULÍK, MARIE JURKOVÁ, PAVEL ČEJKA, VLADIMÍR KELLNER,…
Key words
space, spacehead, headpivovarské, pivovarskéanalytice, analyticeanalýzy, analýzyprovedení, provedenívzorku, vzorkubrewing, brewingstříkačky, stříkačkysyringe, syringegastight, gastightobjemu, objemuobvykle, obvyklenebo, nebopři
MEPS and It’s Using in Sample Preparation in Brewing Analytics
326 K VA S N Y P RU M . 57 / 2011 (9) MEPS a jeho použití při přípravě vzorků v pivovarské analytice MEPS a jeho použití při přípravě vzorků v pivovarské analytice MEPS and It’s Using in Sample…
Key words
meps, mepspivovarské, pivovarskéanalytice, analyticejeho, jehopoužití, použitívzorků, vzorkůpři, připřípravě, přípravěextrakce, extrakcealkoholů, alkoholůmetody, metodystanovení, stanovenípivu, pivuaromatických, aromatickýchpevné
Other projects
LCMS
ICPMS
Follow us
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike