GCMS
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike

Analysis of Neutral PFAS in Ambient Air Using Thermal Desorption GC-MS

Applications | 2025 | ShimadzuInstrumentation
Thermal desorption, GC/MSD, GC/SQ
Industries
Environmental
Manufacturer
Shimadzu

Summary

Importance of the Topic


Per- and polyfluoroalkyl substances (PFAS) are highly valued for their heat resistance and water-repelling properties, leading to widespread use in industrial and consumer products. Their environmental persistence and potential toxicity have prompted stricter regulations worldwide. Atmospheric emissions of volatile and semivolatile neutral PFAS from manufacturing facilities represent a significant pollution route, making accurate air monitoring essential for assessing exposure risks and controlling environmental release.

Study Objectives and Overview


This study evaluates a combined thermal desorption GC-MS system for quantifying nine neutral PFAS in ambient air. The goals were to establish a high-throughput method that avoids solvent extraction, confirm sensitivity and linearity over a broad range, and verify performance through spike-and-recovery tests in real air samples.

Methodology and Instrumentation


Ambient air samples were collected on dual-layer thermal desorption tubes (Tenax TA and Carboxen 1000). A Shimadzu TD-30R autosampler thermally desorbed analytes directly into a GCMS-QP2020 NX system. The Fast Automated Scan/SIM Technique (FASST) alternated between scan mode for qualitative screening and SIM mode for quantitative determination. Calibration standards covering 0.05–12.5 ng per compound were prepared for nine PFAS, including fluorotelomer alcohols, acrylates, and sulfonamides.

Instrumentation Used


  • Shimadzu TD-30R thermal desorption autosampler
  • Shimadzu GCMS-QP2020 NX mass spectrometer
  • Dual-layer sorbent tubes: Tenax TA and Carboxen 1000
  • Capillary column: SH-200 (60 m × 0.32 mm, 1.0 µm)

Main Results and Discussion


Calibration curves exhibited excellent linearity (R > 0.998) across 0.05–12.5 ng, with method detection limits of 0.05 ng per compound. Repeatability at 0.2 ng showed area and concentration RSDs below 6%. Spike-and-recovery tests in 20 L ambient air yielded recoveries between 77% and 106% and concentration RSDs under 8%, indicating robust accuracy and precision for real-world samples.

Benefits and Practical Applications


  • Direct analysis without solvent extraction enables rapid sample throughput.
  • High sensitivity and linearity allow trace-level PFAS detection in air.
  • Dual-mode acquisition supports simultaneous qualitative screening and quantitative reporting.

Future Trends and Potential Applications


Expanding the method to additional PFAS species and complex matrices such as indoor air and occupational settings could enhance environmental surveillance. Integration with automated sampling networks, miniaturized field deployable units, and coupling with other detectors (e.g., high-resolution MS) may offer real-time monitoring capabilities. This platform can support regulatory compliance, epidemiological studies, and broader environmental risk assessments.

Conclusion


The TD-30R/GCMS-QP2020 NX system delivers a sensitive, accurate, and high-throughput approach for measuring volatile and semivolatile neutral PFAS in ambient air. Its combined thermal desorption and FASST acquisition provides reliable quantitative data and qualitative screening, making it well suited for routine environmental monitoring.

Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.

Downloadable PDF for viewing
 

Similar PDF

Toggle
Analysis of Trace Perfluorinated and Polyfluorinated Organic Vapors in Air
Application Note Environmental Analysis of Trace Perfluorinated and Polyfluorinated Organic Vapors in Air Using cryogen-free thermal desorption and GC/MS Authors Abstract Laura Miles Markes International Ltd. Bridgend, UK This application note describes the sampling and analysis of a challenging range…
Key words
pfas, pfasfluorotelomer, fluorotelomertubes, tubessampling, samplingmefosa, mefosapfuda, pfudapfteda, pftedapftrda, pftrdapfdoa, pfdoaacrylates, acrylatespfpea, pfpeasorbent, sorbentpfba, pfbapfda, pfdapfhxa
High-throughput analysis of both neutral and ionic PFAS in ambient air using thermal desorption coupled to gas chromatography – mass spectrometry (TD-GC-MS/MS)
Application note | 001715 Environmental High-throughput analysis of both neutral and ionic PFAS in ambient air using thermal desorption coupled to gas chromatography – mass spectrometry (TD-GC-MS/MS) Goal Authors The aim of this application note is to demonstrate a high-throughput…
Key words
perfluoro, perfluoropfas, pfasacid, acidpfoa, pfoafluorotelomer, fluorotelomercarboxylic, carboxylicsorbent, sorbenttrap, trapfoet, foetpfba, pfbaftcas, ftcaspfhxa, pfhxafdet, fdetpfhpa, pfhpapfna
Fast and Accurate Quantitation of Perfuorinated Sources from Textiles using Gas Chromatography-Triple Quadrupole Mass Spectrometry
PO-CON1732E Fast and Accurate Quantitation of Perfluorinated Sources from Textiles using Gas Chromatography-Triple Quadrupole Mass Spectrometry ASMS 2017 TP-296 Hui Xian Crystal Yeong1†, Stephany Olivia2, Cynthia Melanie Lahey1, Guo Wei Elgin Ting1, Lai Chin Loo1 1 Application Development & Support…
Key words
textiles, textilesperfluorinated, perfluorinatedmefose, mefosemefosa, mefosaetfosa, etfosaetfose, etfosesources, sourceswellington, wellingtonquantitation, quantitationtqms, tqmsmrm, mrmtriple, triplequadrupole, quadrupoleidl, idlspectrometry
Analysis of Volatile PFAS in Water Using Head-Space Solid Phase Microextraction- Gas Chromatography/Mass Spectrometry (HS-SPME GC/MS)
Application News GCMS-QP2020 NX Gas Chromatograph Mass Spectrometer / AOC™-6000 Plus Analysis of Volatile PFAS in Water Using Head-Space Solid Phase MicroextractionGas Chromatography/Mass Spectrometry (HS-SPME GC/MS) User Benefits ◆ ◆ ◆ HS-SPME GC/MS can analyze selected PFAS in water samples…
Key words
pfas, pfasspme, spmepfhxi, pfhxipfoi, pfoimillipore, milliporepfis, pfisetfosa, etfosamefosa, mefosasigma, sigmahimadzu, himadzusim, simiodides, iodidesftohs, ftohscompounds, compoundscapability
Other projects
LCMS
ICPMS
Follow us
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike