Agilent 8700 LDIR Chemical Imaging System (Recent Publications)
Scientific articles | 2023 | Agilent TechnologiesInstrumentation
Microplastics have emerged as pervasive contaminants in aquatic, terrestrial, and biological systems. Accurate, high-throughput identification and quantification are essential for assessing environmental exposure, human health risks, and the effectiveness of remediation and treatment processes. Laser Direct Infrared (LDIR) imaging presents a promising solution by combining rapid analysis with robust polymer identification across diverse sample matrices.
The Agilent 8700 LDIR Chemical Imaging System offers a robust, high-throughput platform for comprehensive microplastic analysis. Its rapid data acquisition, high identification accuracy, and versatility across matrices make it an indispensable tool for environmental scientists, regulatory agencies, and public health researchers.
FTIR Spectroscopy
IndustriesEnvironmental
ManufacturerAgilent Technologies
Summary
Significance of the topic
Microplastics have emerged as pervasive contaminants in aquatic, terrestrial, and biological systems. Accurate, high-throughput identification and quantification are essential for assessing environmental exposure, human health risks, and the effectiveness of remediation and treatment processes. Laser Direct Infrared (LDIR) imaging presents a promising solution by combining rapid analysis with robust polymer identification across diverse sample matrices.
Objectives and overview of studies
- Compile and evaluate recent peer-reviewed research employing the Agilent 8700 LDIR Chemical Imaging System.
- Compare performance across multiple environments: marine water, estuarine sediments, soils, wastewater, drinking water, groundwater, food, and biological tissues.
- Highlight methodological advances in sample preparation, imaging throughput, and polymer recovery.
Applied methodology and instrumentation
- Sample collection: filtration of water (20–500 µm), fractionated inert systems for ocean transects, enzymatic-oxidative digestion for soils and biota.
- Preconcentration: polycarbonate filters on Kevley slides, laser microdissection pressure catapulting for single-particle handling.
- LDIR parameters: detection range down to 10–20 µm, automated spectral matching without manual reassignment, ATR-FTIR validation for >300 µm particles.
- Instrumentation: Agilent 8700 Laser Direct Infrared Chemical Imaging System for rapid, label-free polymer identification and size/shape characterization.
Main results and discussion
- Identification accuracy exceeded 97% across large datasets without manual reassignments.
- High-throughput analysis of up to 1 000 particles in 1–2 hours, far surpassing FTIR and Raman in speed.
- Recoveries of 80–100% for reference polymers (PP, PE, PS, PVC, PET) and quantification of particles as small as 10 µm in complex matrices.
- Consistent detection of dominant polymers (PS, PU, PET, PA, PP, PE) in environmental and biological samples.
- Demonstrated applicability to hydrological studies, agricultural soil monitoring, wastewater treatment evaluation, drinking water safety, food packaging leachables, human exposure in sputum, placental tissues, and model organisms.
Benefits and practical applications
- Automated workflows streamline QA/QC in environmental monitoring and regulatory compliance.
- Simultaneous particle counting, sizing, morphologic classification, and polymer identification reduces time and error.
- Enables spatiotemporal mapping of microplastic distributions, contributing to source tracking and impact assessment.
- Supports multidisciplinary studies from marine pollution to human health, agricultural remediation, and drinking water treatment efficacy.
Future trends and potential applications
- Integration with machine learning and deep learning models to enhance polymer classification and reduce training time.
- Advancements toward nanoplastic detection, pushing size limits below 10 µm.
- Standardization of protocols for cross-laboratory comparability and method validation.
- Coupling LDIR with laser microdissection pressure catapulting for single-particle validation and number-based validation strategies.
- Development of complementary mass-based quantification techniques to provide combined mass/particle metrics.
Conclusion
The Agilent 8700 LDIR Chemical Imaging System offers a robust, high-throughput platform for comprehensive microplastic analysis. Its rapid data acquisition, high identification accuracy, and versatility across matrices make it an indispensable tool for environmental scientists, regulatory agencies, and public health researchers.
References
- Cizdziel J., Mississippi Water Resources Research Institute, 2020
- Scircle A., Cizdziel J.V., Tisinger L., Anumol T., Robey D., Toxics, 2020
- Cheng M.L.H., Lippmann T.C., Dijkstra J.A., Bradt G., Cook S., Choi J.-G., Brown B.L., Marine Pollution Bulletin, 2021
- Bringer A., Le Floch S., Kerstan A., Thomas H., Marine Pollution Bulletin, 2021
- Hildebrandt L., El Gareb F., Zimmermann T., Klein O., Kerstan A., Emeis K.-C., Pröfrock D., Environmental Pollution, 2022
- Ourgaud M., Phuong N.N., Papillon L., Panagiotopoulos C., Galgani F., Schmidt N., Fauvelle V., Brach-Papa C., Sempéré R., Environmental Science & Technology, 2022
- Li Q., Zeng A., Jiang X., Gu X., Journal of Hazardous Materials, 2021
- Ng E.L., Lin S.Y., Dungan A.M., Colwell J.M., Ede S., Lwanga E.H., Meng K., Geissen V., Blackall L.L., Chen D., Journal of Hazardous Materials, 2021
- Jia W., Karapetrova A., Zhang M., Xu L., Li K., Huang M., Wang J., Huang Y., Science of The Total Environment, 2022
- Cheng Y.-L., Zhang R., Tisinger L., Cali S., Yu Z., Chen H.Y., Li A., Gondwana Research, 2022
- Zhang Y., Peng Y., Peng C., Wang P., Lu Y., He X., Wang L., Environmental Science & Technology, 2021
- Xing R., Sun H., Du X., Lin H., Qin S., Chen Z., Zhou S., Journal of Hazardous Materials, 2023
- Liu N., Cheng S., Wang X., Li Z., Zheng L., Lyu Y., Ao X., Wu H., Water Research, 2022
- Gao Z., Chen L., Cizdziel J., Huang Y., Journal of Environmental Management, 2023
- Tian Y., Chen Z., Zhang J., Wang Z., Zhu Y., Wang P., Zhang T., Pu J., Sun H., Wang L., Journal of Hazardous Materials, 2021
- Forster N.A., Wilson S.C., Tighe M.K., Journal of Environmental Management, 2023
- Forster N.A., Wilson S.C., Tighe M.K., Environmental Science and Pollution Research, 2023
- Forster N.A., Wilson S.C., Tighe M.K., Science of The Total Environment, 2023
- Mughini-Gras L., van der Plaats R.Q.J., van der Wielen P.W.J.J., Bauerlein P.S., de Roda Husman A.M., Water Research, 2021
- Fan Y., Zheng J., Deng L., Rao W., Zhang Q., Liu T., Qian X., Water Research, 2022
- Samandra S., Singh J., Plaisted K., Mescall O.J., Symons B., Xie S., Ellis A.V., Clarke B.O., Marine Pollution Bulletin, 2023
- Whiting Q.T., O’Connor K.F., Potter P.M., Al-Abed S.R., Analytical and Bioanalytical Chemistry, 2022
- Samandra S., Johnston J.M., Jaeger J.E., Symons B., Xie S., Currell M., Ellis A.V., Clarke B.O., Science of The Total Environment, 2022
- Kumar V., Singh E., Singh S., Pandey A., Bhargava P.C., Chemical Engineering Journal, 2023
- Kutralam-Muniasamy G., Perez-Guevara F., Shruti V.C., Journal of Hazardous Materials, 2021
- Li L., Zhao X., Li Z., Song K., Journal of Hazardous Materials, 2021
- Huang S., Huang X., Bi R., Guo Q., Yu X., Zeng Q., Huang Z., Liu T., Wu H., Chen Y., Environmental Science & Technology, 2022
- Chen Q., Gao J., Yu H., Su H., Yang Y., Cao Y., Zhang Q., Ren Y., Shi H., Chen C., Liu H., 2021 (preprint)
- Zheng-gang H., Liang L., Jun N., et al., Chinese Journal of Public Health, 2021
- López-Rosales A., Andrade J., Fernández-González V., López-Mahía P., Muniategui-Lorenzo S., Marine Pollution Bulletin, 2022
- Liu S., Guo J., Liu X., Yang R., Wang H., Sun Y., Chen B., Dong R., Science of The Total Environment, 2023
- Meng K., Lwanga E.H., van der Zee M., Munhoz D.R., Geissen V., Journal of Hazardous Materials, 2023
- Song K., Ding R., Sun C., Yao L., Zhang W., Environmental Science and Pollution Research, 2021
- Bäuerlein P.S., Hofman-Caris R.C., Pieke E.N., Ter Laak T.L., Water Research, 2022
- Samandra S., Mescall O.J., Plaisted K., Symons B., Xie S., Ellis A.V., Clarke B.O., Science of The Total Environment, 2022
- Dong M., She Z., Luo X., (preprint), 2021
- Bäuerlein P.S., Pieke E.N., Oesterholt F.I.H.M., ter Laak T., Kools S.A.E., Water Science and Technology, 2022
- Tian X., Beén F., Sun Y., Van Thienen P., Bäuerlein P.S., Environmental Science & Technology Letters, 2023
- Govindu D., Tippani R., Porika M., Sura S.P., Micro and Nanoplastics in Soil: Threats to Plant-Based Food, 2023
- Hildebrandt L., Zimmermann T., Pröfrock D., Analytical and Bioanalytical Chemistry, 2023
Content was automatically generated from an orignal PDF document using AI and may contain inaccuracies.
Similar PDF
Solving Our Plastic Problem: Advances in Microplastics Analysis
2024|Agilent Technologies|Guides
Solving Our Plastic Problem: Advances in Microplastics Analysis Contents Introduction: our plastic problem 3 Where do microplastics come from? 3 3 How Agilent is tackling the problem References4 Challenges in microplastics analysis: from routine laboratory testing to pushing the boundary…
Key words
microplastics, microplasticsldir, ldirparticle, particlemicroplastic, microplasticparticles, particlesimaging, imaginganalysis, analysisinfrared, infraredfilter, filterchallenges, challengesftir, ftirlaser, laserraman, ramanmicroscopy, microscopyenvironment
Fast, Automated Microplastics Analysis Using Laser Direct Chemical Imaging
2020|Agilent Technologies|Applications
Application Note Environmental Water analysis Fast, Automated Microplastics Analysis Using Laser Direct Chemical Imaging Characterizing and quantifying microplastics in water samples from marine environments Authors Introduction Lars Hildebrandt, Fadi El Gareb, Tristan Zimmermann, Ole Klein, Kay-Christian Emeis, Daniel Proefrock1 Andreas…
Key words
microplastic, microplasticmicroplastics, microplasticsldir, ldirparticles, particlesfibers, fibersacrylates, acrylatespolyurethanes, polyurethanesraman, ramanbuoyant, buoyantpictorum, pictorumparticle, particlemicrospectroscopic, microspectroscopicabundant, abundantunio, uniotransflection
From Collection to Analysis: A Practical Guide to Sample Preparation and Processing of Microplastics
2024|Agilent Technologies|Technical notes
Technical Overview From Collection to Analysis: A Practical Guide to Sample Preparation and Processing of Microplastics Essential laboratory setup, sample preparation steps, and analytical methods for analyzing microplastics Authors Introduction Subharthe Samandra and Bradley Clarke Australian Laboratory for Emerging Contaminants,…
Key words
microplastics, microplasticsmicroplastic, microplasticfiltration, filtrationldir, ldirpreparation, preparationdensity, densitysample, samplewater, watermatter, matterparticles, particlesfilters, filtersdigestion, digestionanalysis, analysisvacuum, vacuumsodium
Analyzing Colored Microplastics with the Agilent 8700 Laser Direct Infrared (LDIR) Chemical Imaging System
2023|Agilent Technologies|Applications
Application Note Environmental Analyzing Colored Microplastics with the Agilent 8700 Laser Direct Infrared (LDIR) Chemical Imaging System Authors Abstract Wesam Alwan and Darren Robey Agilent Technologies, Inc. Plastics are produced in various colors to serve different manufacturing purposes, such as…
Key words
pet, petmicroplastics, microplasticspigments, pigmentsldir, ldircolored, coloreddyes, dyesparticles, particlesclarity, claritycolorants, colorantsraman, ramanmicroplastic, microplasticflopp, floppplastic, plasticbrown, browncharacterizing