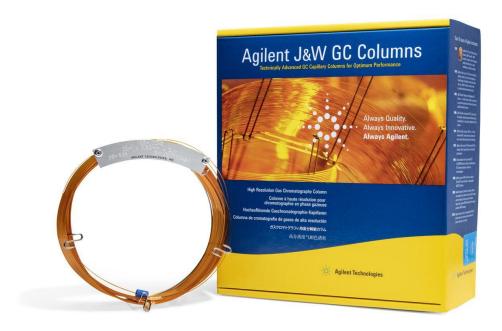
Tips and Tricks: Best Practices for Column Installation and Care of GC Columns

Ryan Birney and Alexander Ucci Application Engineers September 28, 2023






DE39542628

# Agenda

- Unboxing/"getting to know your column"
- Install the column
- Preventive measures
- Corrective measures
- Latest instrument developments





## **Column Construction**

### Polyimide coating

Flexible polymeric coating; adds mechanical strength and temperature stability to fused silica

### Fused silica

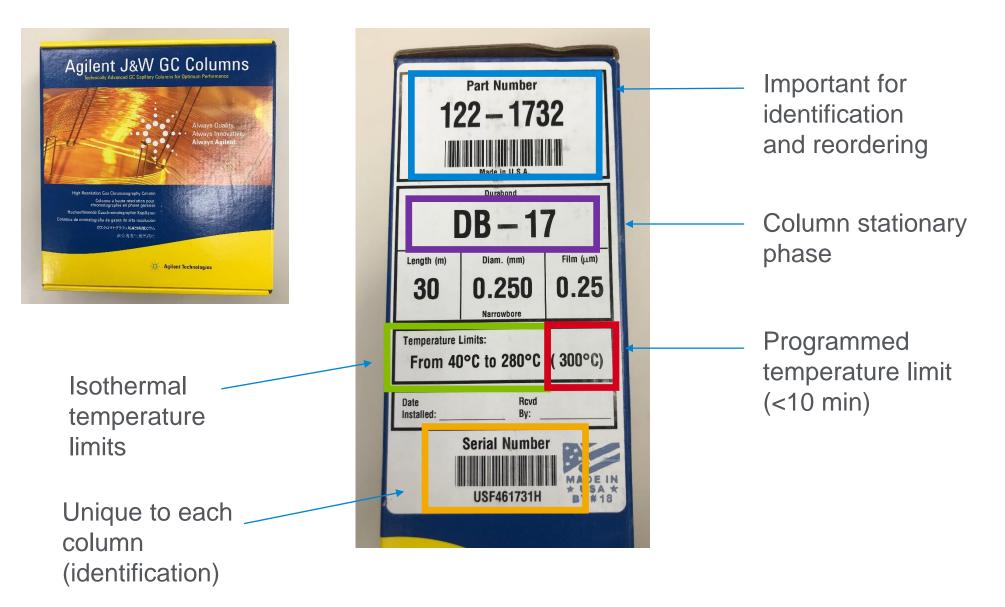
Amorphous glass-like tubing, comprised of silicon dioxide; high temperature resistance, low reactivity. May contain rough edges, creating active sites.

### Deactivation

Chemical treatment layer; smooths fused silica surface to enhance inertness

### Stationary phase

Polymeric coating atop deactivation layer; commonly comprised of polysiloxane- or polyethyleneglycol-based compounds




# Agilent J&W Column Portfolio – DB, HP, CP, VF

| Low Polarity      |                    |                  | Mid Polarity     |                                                                       |           | High Polarity |                      |              |  |
|-------------------|--------------------|------------------|------------------|-----------------------------------------------------------------------|-----------|---------------|----------------------|--------------|--|
| CP-Sil 2          | DB & HP-1ms UI     | DB & HP-5ms UI   | DB-XLB           | DB-225ms                                                              | DB-ALC1   | HP-88         | DB-WAX               | DB-WAX UI    |  |
| DB-MTBE           | DB & HP-1ms        | DB & HP-5ms      | VF-Xms           | DB-225                                                                | DB-Dioxin | CP-Sil 88     | DB-WAXetr            | DB-HeavyWAX  |  |
| CP-Select CB MTBE | VF-1ms             | VF-5ms           | DB-35ms UI       | CP-Sil 43 CB                                                          | DB-200    | DB-23         | HP-INNOWax           | DB-FATWAX UI |  |
|                   | DB & HP-1          | DB & HP-5        | DB & VF-35ms     | VF-1701ms                                                             | VF-200ms  | VF-23ms       | VF-WAXms             |              |  |
|                   | CP-Sil 5 CB        | CP-Sil 8 CB      | DB & HP-35       | DB-1701                                                               | DB-210    |               | CP-Wax 57 CB         |              |  |
|                   | Ultra 1            | Ultra 2          | DB & VF-17ms     | CP-Sil 19 CB                                                          | DX-4      |               | DB and HP-FFAP       |              |  |
|                   | DB-1ht             | VF-DA            | DB-17            | HP-Blood Alcohol                                                      |           |               | DB-WAX FF            |              |  |
|                   | DB-2887            | DB-5.625         | HP-50+           | DB-ALC2                                                               |           |               | CP-FFAP CB           |              |  |
|                   | DB-Petro/PONA      | DB & VF-5ht      | DB-17ht          | DX-1                                                                  |           |               | CP-WAX 58 FFAP<br>CB |              |  |
|                   | CP-Sil PONA CB     | CP-Sil PAH CB    | DB-608           |                                                                       |           |               | CP-Wax 52 CB         |              |  |
|                   | DB-HT SimDist      | Select Biodiesel | DB-TPH           |                                                                       |           |               | CP-WAX 51            |              |  |
|                   | CP-SimDis          | SE-54            | DB-502.2         |                                                                       |           |               | CP-Carbowax 400      |              |  |
|                   | CP-Volamine        |                  | HP-VOC           |                                                                       |           |               | Carbowax 20M         |              |  |
|                   | Select Mineral Oil |                  | DB-VRX           |                                                                       |           |               | HP-20M               |              |  |
|                   | HP-101             |                  | DB-624           |                                                                       |           |               | CAM                  |              |  |
|                   | SE-30              |                  | VF-624ms         |                                                                       |           |               | CP-TCEP              |              |  |
|                   |                    |                  | CP-Select 624 CB |                                                                       |           |               |                      |              |  |
|                   |                    |                  | DB-1301          | Agilent J&W columns have over 50 different stationary phase offerings |           |               |                      |              |  |
|                   |                    |                  | VF-1301ms        |                                                                       |           |               |                      |              |  |
|                   |                    |                  | CP-Sil 13 CB     |                                                                       |           |               |                      |              |  |



### The "Unboxing" of the GC Column



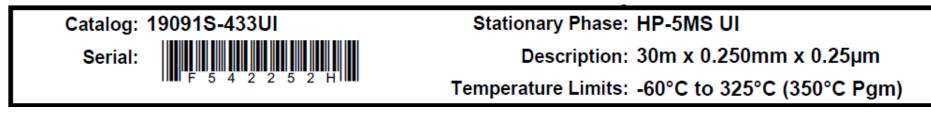
DE39542628



### What's Inside?



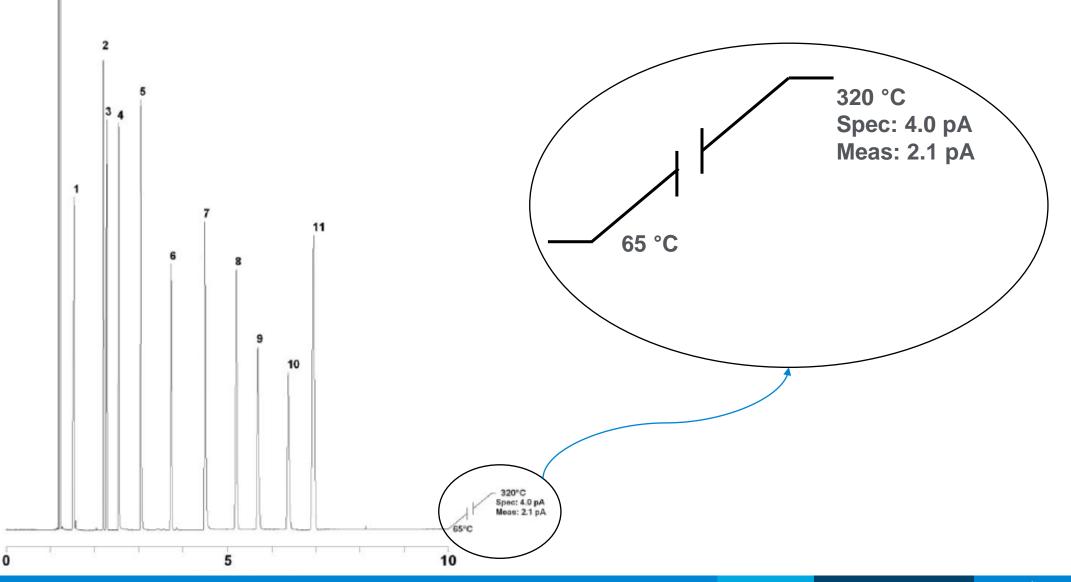





Column tag contains useful information

Column plug holds column ends together and protects against contamination. To put the column in storage, use this plug again, or a piece of septa over the ends of the column.




### **Column Performance Summary**



| Performance Results                               |                    | Compound Identification                                                                                                                                                                                                                                                | Retent.<br>Time                                    | Part.<br>Ratio                               | 1/2-<br>Width                                      |  |
|---------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------|--|
| Theoretical Plates/Meter:<br>n-DECANE             | 3208               | 1. PROPIONIC ACID<br>2. 1-OCTENE<br>3. n-OCTANE<br>4. 1,3-PROPANEDIOL<br>5. 4-METHYLPYRIDINE<br>6. n-NONANE<br>7. TRIMETHYL RUGORUATE                                                                                                                                  | 1.543<br>2.203<br>2.282<br>2.552<br>3.051<br>3.738 | 0.30<br>0.86<br>0.92<br>1.15<br>1.57<br>2.15 | 0.027<br>0.015<br>0.016<br>0.020<br>0.021<br>0.027 |  |
| Retention Index:<br>n-PROPYLBENZENE<br>1-HEPTANOL | 953.110<br>967.660 | 7. TRIMETHYLPHOSPHATE<br>8. n-PROPYLBENZENE<br>9. 1-HEPTANOL<br>10. 3-OCTANONE<br>11. n-DECANE                                                                                                                                                                         | 4.482<br>5.193<br>5.682<br>6.368<br>6.940          | 2.78<br>3.38<br>3.79<br>4.37<br>4.85         | 0.033<br>0.038<br>0.041<br>0.047<br>0.053          |  |
| Resolution:<br>1-OCTENE, n-OCTANE 2.97            |                    | Test Conditions         Inlet: Split (250°C)       Detector:       FID (325°C)         Carrier Gas:       Hydrogen       Flow: 42.1 cm/sec (1.2 ml/min)         Holdup Compound:       Pentane       (1.187-min)         Temperature Program:       Isothermal at 65°C |                                                    |                                              |                                                    |  |



### **Chromatographic Performance**



DE39542628

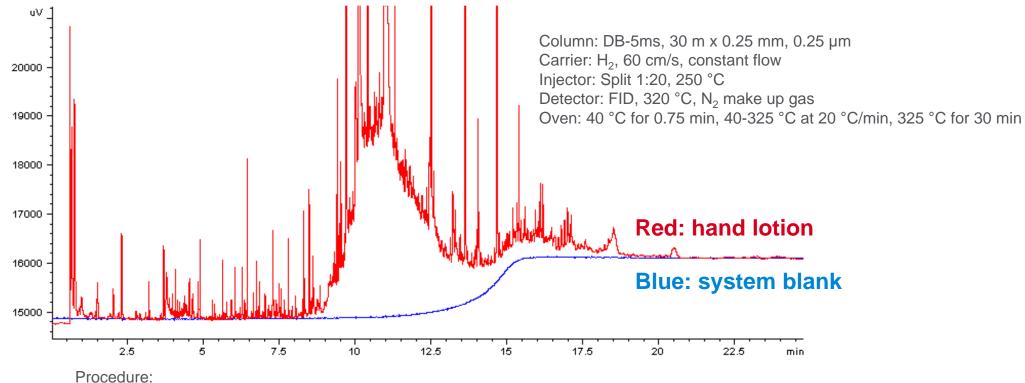


### **Test Mixture Components**

<u>Compounds</u> Hydrocarbons Purpose Efficiency Retention

FAMEs, PAHs Alcohols Acids Bases Retention Activity Acidic character Basic character




### **Column Installation Procedure**

- Install the column
- Leak and installation check
- Column conditioning
- Bleed profile
- Test mix





### **Contamination from Hand Lotion**



- (1) One small drop of liquid placed on one fingertip.
- (2) Fingertip was wiped with paper towel to remove as much of the offending material as possible.
- (3) Lightly touched the part of the column sticking up above the ferrule.
- (4) Installed column into injector.
- (5) Set oven temperature to 40 °C.
- (6) Started oven temperature program as soon as oven reached 40 °C.



### "Touchless" Packaging















### Column Installation What type of ferrule should I use?



Polyimide



Graphite





Polyimide/ graphite Flexible Metal

| Composition                  | Re-use  | Max Temperature (°C) | Use                                                       | Limitation                                                                    |
|------------------------------|---------|----------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------|
| Polyimide (Vespel)           | Yes     | 280                  | Easy seal                                                 | Shrink after heating causing leaks after thermal cycle; isothermal only       |
| Graphite                     | Yes     | 450                  | FID, NPD, inlets                                          | Contamination, permeable to air – not for oxygen-<br>sensitive detectors      |
| Polyimide/graphite (85%/15%) | Limited | 350                  | MS, ECD, inlets                                           | Still shrink after thermal cycles creating leaks; need to retighten regularly |
| Flexible Metal               | No      | 450                  | Capillary flow<br>technology<br>(backflush,<br>splitters) | May not seal well with damaged fittings or rough surfaces                     |



"Short" ferrules for inlet and detector configurations on Agilent GCs

DE39542628



"Long" ferrules for MS transfer lines and MS interface nut



# Agilent Gold-Plated Flexible Metal Ferrules (FMFs)

### Agilent is excited to announce the release of our new gold-plated Flexible Metal ferrules

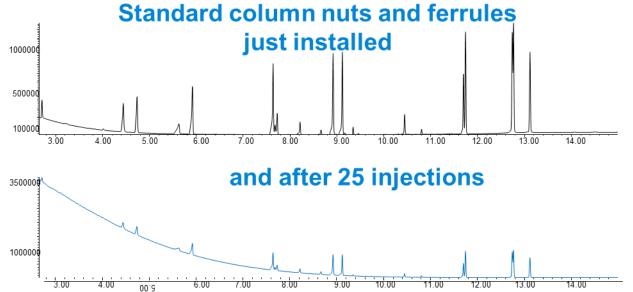
These newly launched ferrules improve upon the existing Flexible Metal ferrule (FMF) design by applying a
gold coating to ensure a leak-free connection with Capillary Flow Technology (CFT) devices while
providing enhanced ease of use.





# The Highlights

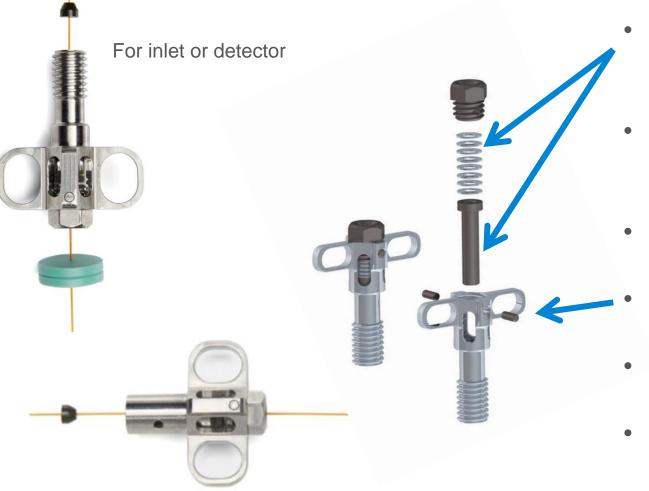
### Review


- Flexible Metal ferrules are technologically advanced to provide ease-of-use and mechanically tight seals
- Gold-plating flows to fill scratches and striations on the surface of the CFT device
- Creates leak-free seals on first installation attempt
- Ideal for labs running backflush, Dean's switch, or GC x GC analyses



# Graphite/Polyimide Blend Capillary Ferrules

Unfortunately, a leak occurred following normal temperature program runs.

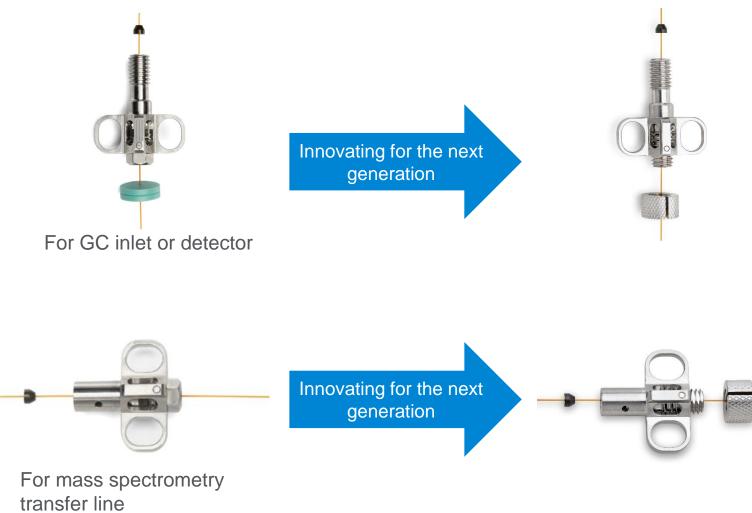

Studies show that the leaking continues with use of the ferrules (not just after the first one or two runs).



Frequent retightening of the fitting is needed to maintain a leak-free seal, as well as system performance and productivity.



# Column Installation: Self Tightening Column Nut




For mass spectrometry transfer line

- Spring-driven piston continuously presses against ferrule
- Automatically retightens when ferrule shrinks
- No leaks, no downtime, no frustration
- Wing design for finger tightening
- No tools needed
- No polymer materials for durability
- Compatible **only** with short graphite
- Vespel ferrules



# Increasing Ease of Use Through Continued Innovation: Self Tightening Nuts

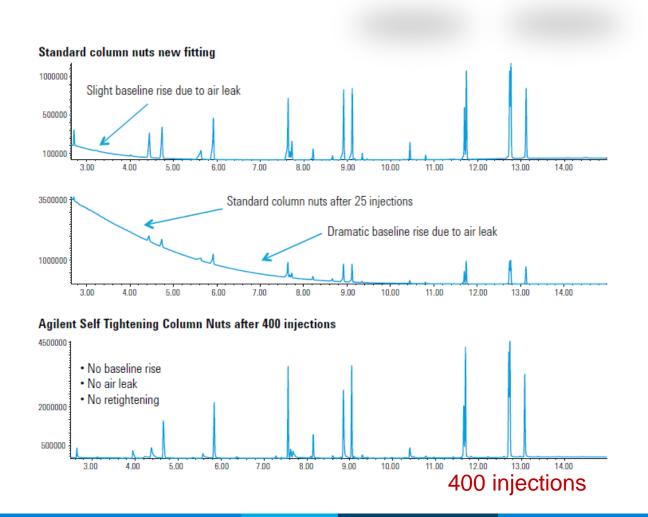


- Easier and faster to install
- Collar holds column in place
- Single-hand installation into inlet
- No tools needed





### Self Tightening Nuts: No Leaks, No Downtime, No Frustration




- Spring-driven piston continuously presses against ferrule
- Automatically retightens when ferrule shrinks
- Wing design for finger tightening
- No tools needed

| Part Number | Description                                       |
|-------------|---------------------------------------------------|
| G3440-81013 | Column Nut, Collared Self-Tightening MSD          |
| G3440-81011 | Column nut, Collared Self Tightening Inlet/Detect |
| G3440-81012 | Collar for Self Tigthening Nut                    |

https://www.agilent.com/en/video/gc-supplies-innovation

https://www.agilent.com/en/video/stcn-inlet-detector https://www.agilent.com/en/video/stcn-mass-spec





# New Agilent Standard Winged Nut and Depth Guide

- Compatible with Agilent/HP style compact ferrules, including graphite ferrules
- Winged fastener design for easy engagement and tool-free install
- Hollow-body design with low thermal mass mitigates thermal lag during temperature cycling within the GC oven
- Removable locking-collar with soft-PTFE insert to secure column placement during install, without damaging the analytical column



- Easy-to-use template provides critical capillary column installation for the most popular Agilent GC configurations
- SSL, MMI, purge-packed inlets
- FID, TCD, NPD detectors
- EI MSD source
- Compatible with the Agilent Self Tightening and winged column nuts

#### Don't confuse them with the Self-tightening nuts





Inlet/detector G3440-81018

MSD G3440-81019

Agilent

ELMS

# Matching the Correct Nut with the Correct Ferrule

| Nuts/ferrules for inlets and non-MS detectors (male) |                                  |       |                     |  |  |  |  |  |
|------------------------------------------------------|----------------------------------|-------|---------------------|--|--|--|--|--|
| Photo                                                | Nut                              | Photo | Ferrule             |  |  |  |  |  |
|                                                      | Traditional/<br>legacy nut       |       | Short               |  |  |  |  |  |
| The second                                           | Wing nut                         |       | Short               |  |  |  |  |  |
|                                                      | Self<br>Tightening<br>column nut |       | Short – G/V<br>only |  |  |  |  |  |

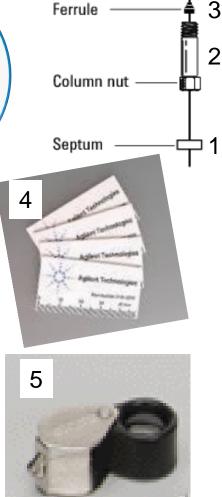
### Nuts/ferrules MSD (female – G/V only) Ferrule Photo Nut Photo (G/V Only!) Traditional/ Long legacy nut Wing nut Long Self Short – G/V Tightening only column nut



## **Column Installation Assembly Process**

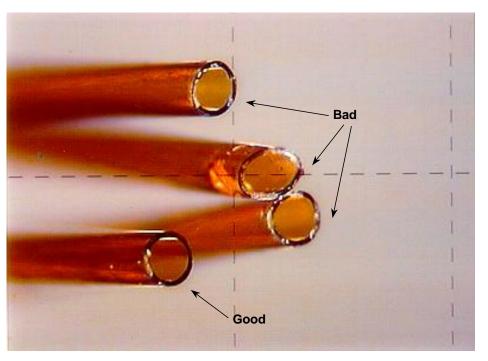





Thread through an inlet septum (if using a traditional nut).

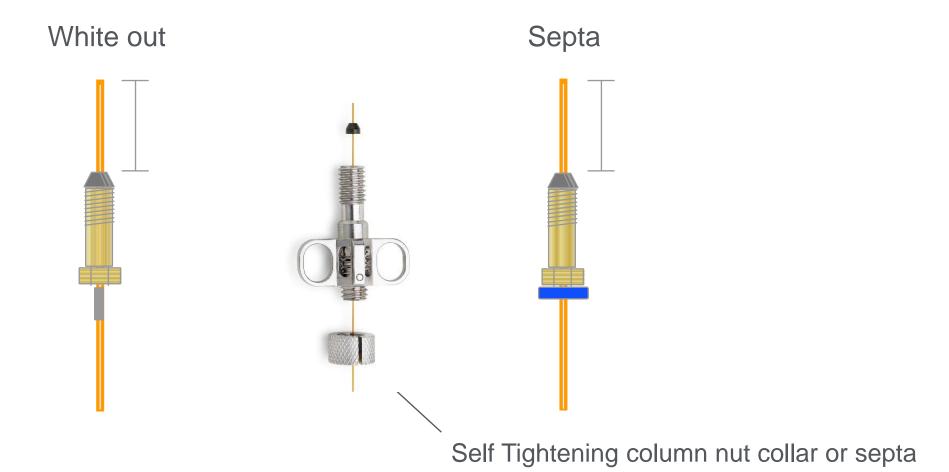
Pass column through the column nut.

Install ferrule onto the column tubing.


Then make a fresh cut.

Inspect the cut; repeat the cut if there are any jagged or rough edges.









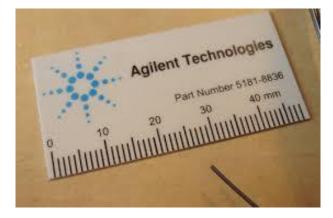

Agilent

### Column Installation Measuring the right distance



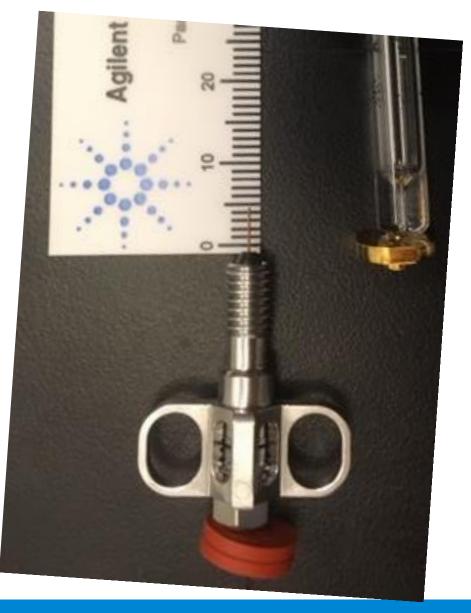


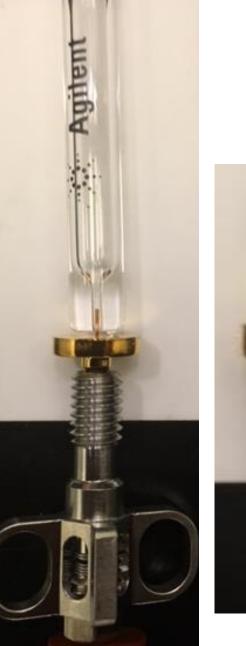
# Cutting the Column


Gently scribe through the polyimide coating Do not attempt to cut the glass

### Recommended tools

- Diamond or carbide-tipped pencil, or sapphire cleaving tool
- Ceramic wafer
- Ocular

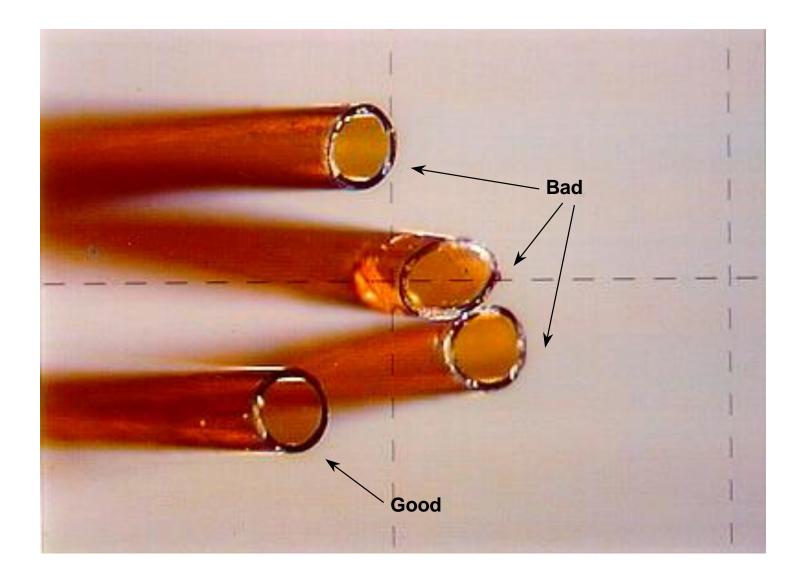

Do not use


• Scissors, file





### Why Does Distance Matter?

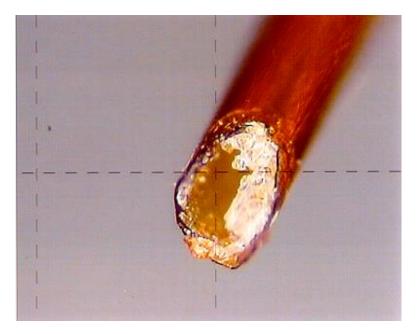









### Examples of Column Cuts






### **Column Installation**

How tight is tight?





Overtightened ferrule





### **Column Installation Videos**


Conditioning Your GC Column | Agilent

Front-End Maintenance for Your GC Column | Agilent

Installing a New GC Column into Your Inlet | Agilent

Installing a New GC Column into Atmospheric Detector Agilent

Installing a New GC Column into Your Mass Spec | Agilent





# New Agilent Universal Fit GC Detector Jets

- Easier column installation and jet replacement reduces the risk of column damage
- Lubricant-free threads reduce the risk of contamination

**Tips and Tricks** 

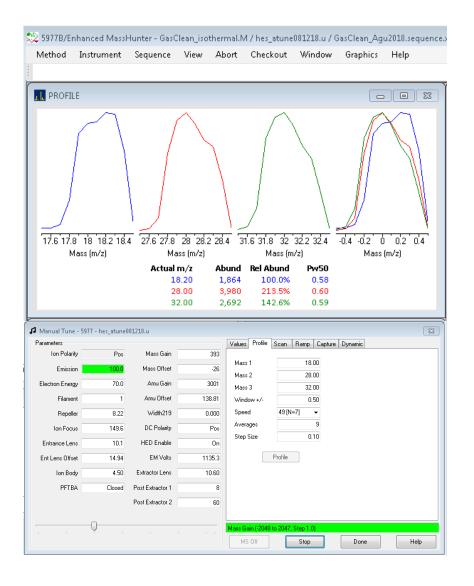
- Made of strong material which reduces the risk of deforming
- Universally fits in both capillary column and packed column (adaptable) FID detectors



| Previous Jets   |                             |                         |                                 | New Universal Fit Jets           |                              |                           |                                 |  |
|-----------------|-----------------------------|-------------------------|---------------------------------|----------------------------------|------------------------------|---------------------------|---------------------------------|--|
| Previous Jet PN | Jet Orifice ID<br>(inch/mm) | Jet Length<br>(inch/mm) | Fit of Detector<br>Fitting Type | New Jet PN<br>(use for re-order) | Jet Orifice ID<br>(inch/ mm) | Jet Length<br>(inch / mm) | Fit of Detector<br>Fitting Type |  |
| 19244-80560     | 0.011 / 0.29                | 2.4 / 62                | FID, Adaptable                  | 5200 0170                        | 0.011 / 0.29                 | 1 2 / 21                  | FID, Capillary &                |  |
| G1531-80560     | 0.011 / 0.29                | 1.7/43                  | FID, Capillary                  | - 5200-0176                      |                              | 1.2 / 31                  | Adaptable                       |  |
| 18710-20119     | 0.018 / 0.47                | 2.5 / 64                | FID, Adaptable                  |                                  |                              |                           | FID, Capillary &<br>Adaptable   |  |
| 19244-80620     | 0.018 / 0.47                | 2.4 / 62                | FID, Adaptable                  | 5200-0177                        | 0.018 / 0.47                 | 1.2 / 31                  |                                 |  |
| G1531-80620     | 0.018 / 0.47                | 1.7 / 43                | FID, Capillary                  |                                  |                              |                           |                                 |  |
| 18789-80070     | 0.030 / 0.76                | 2.5 / 64                | FID, Adaptable                  | 5200-0178                        | 0.030 / 0.76                 | 1.2 / 31                  | FID, Capillary &<br>Adaptable   |  |
| G1534-80580     | 0.011 / 0.29                | 2.0 / 52                | NPD, Capillary                  | 5200 0170                        | 0.011 / 0.29                 | 1.6 / 40                  | NPD, Capillary &                |  |
| G1534-80590     | 0.011 / 0.29                | 2.8 / 71                | NPD, Adaptable                  | 5200-0179                        | 0.011 / 0.29                 | 1.6 / 40                  | Adaptable                       |  |
|                 |                             |                         |                                 |                                  |                              |                           | 2 4 A                           |  |



### Column Installation Leak check


### Do not use snoop

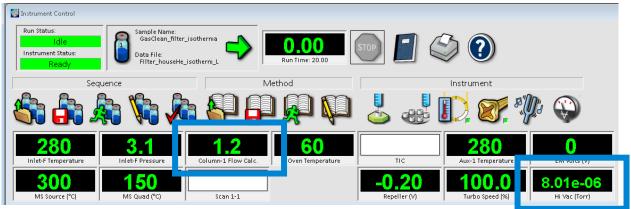
- Electronic leak detector
- IPA/water
- Inject a nonretained peak





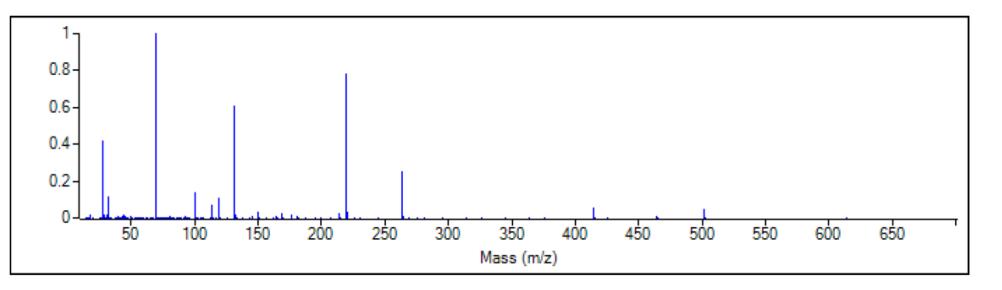
# If My System is Leak-Free, What Should My Air Ion Abundances Be?




- These are just estimates
  - $H_2O: \sim 2,000$  counts (less is ok)
  - N<sub>2</sub>: ~10,000 counts (less is ok)\*
  - O<sub>2</sub>: ~3,000 counts (less is ok)

\*Make sure to purge your Gas Clean filter

High vacuum gauge pressure (for SQ):


~1 x10<sup>-5</sup> Torr<sup>†</sup>







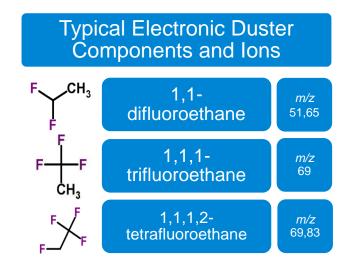
### Example Tune Report with Leak



| Target m/z | Actual m/z | Abund   | Rel Abund | Iso m/z | Iso Abund | Iso Ratio |
|------------|------------|---------|-----------|---------|-----------|-----------|
| 69.00      | 69.00      | 498,432 | 100.0%    | 70.00   | 6,216     | 1.2%      |
| 219.00     | 219.00     | 391,232 | 78.5%     | 220.00  | 18,216    | 4.7%      |
| 502.00     | 502.00     | 23,680  | 4.8%      | 503.00  | 2,467     | 10.4%     |

Air/Water Check: H20 ~1.8% N2 ~42.1% O2 ~11.4% CO2 ~1.3% N2/H20 ~2325.0%

Column(1) Flow: 1.00 Column(2): 1.20 ml/min Interface Temp: 250




### Use Leak Detector or Electronics Duster to Find Your Leaks

Why use a leak detector?

- High sensitivity
- Recommended for leak detection in gas plumbing and fittings





### Use electronics duster

- Hold can upright (don't spray liquid)
- Spray short bursts around possible leak points
- "Live" tune profiling for ions to pinpoint leak



### Agilent CrossLab CS (Cartridge System) No peaks from leaks

Features:

- Exchangeable cartridge with an ADM Flow Meter
- Automatic notification of probe filter replacement
- Ergonomic and robust design
- Universal 3AA or USB power
- USB connects to web interface for added functionality and firmware updates
- Easy-to-view OLED screen
- Kickstand



cartridge

DE39542628



### The Cost of Leaks

Cost of gases Contamination from exposure Reduced consumable lifetime Reduced productivity from downtime Detector noise and elevated baselines Time in troubleshooting



It is critical that every customer checks for leaks. They should have the best tool for the job. Check valves, fittings, and traps for leaks after every maintenance, and after thermal cycling, as these can loosen some types of fittings.



# **Ordering Guide**

G6693A – CrossLab CS Electronic Leak Detector

G6694A – Electronic Leak Detector cartridge

G6699A - CrossLab CS bundle: ADM Flow Meter and Electronic Leak Detector

 The bundle will include one handheld, two cartridges, and a free carrying case.

G6694-60005 – Replacement probe filter G6691-40500– Carrying case



Existing products:

G6691A - CrossLab CS ADM Flow Meter

G6692A – ADM Flow Meter cartridge\*

 Note that the ADM Flow Meter cartridge is ordered annually for calibration. The Electronic Leak Detector does not need to be recalibrated.



# Leak and Installation Check

Inject a nonretained compound

| Detector | Compound                                               |
|----------|--------------------------------------------------------|
| FID      | Methane or butane                                      |
| ECD      | MeCl <sub>2</sub> (headspace or diluted)               |
| NPD      | CH <sub>3</sub> CN-acetonitrile (headspace or diluted) |
| TCD      | Air                                                    |
| MS       | Air or butane                                          |

The peak should be sharp and symmetrical



#### **Nonretained Peak Shapes**



Improper installation or injector leak

Check for:

- Too low of a split ratio
- Injector or septum leak
- Liner problem (broken, leaking, misplaced)
- Column position in injector and detector

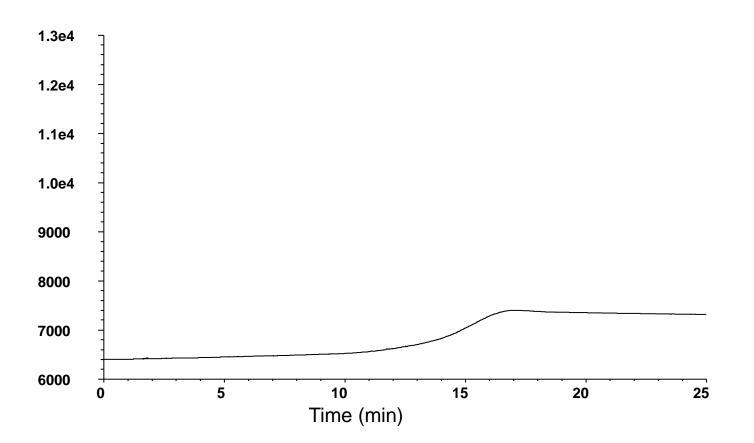
DE39542628





# **Column Conditioning**

System must be leak free before conditioning the column


Heat the column to the <u>lower</u> of:

- Isothermal maximum temperature or 20 to 30 °C above highest operation temperature.
- Temperature programming is not necessary.

Stop conditioning when a stable baseline is obtained: 1 to 2 hours, usually



# **Generating a Bleed Profile**



Temperature program the column without an injection\*

\*Agilent J&W DB-1, 30 m x 0.32 mm id, 0.25 µm Temperature program // 40 °C, hold 1 min // 20 °C/min to 320 °C, hold 10 min



# **Own Test Mixture**

- More specific to your application
- Selective detectors
- Concentrations specific to your application
- Use the same instrument conditions
- Easiest to simply inject a calibration standard
- Store for future measure of column performance

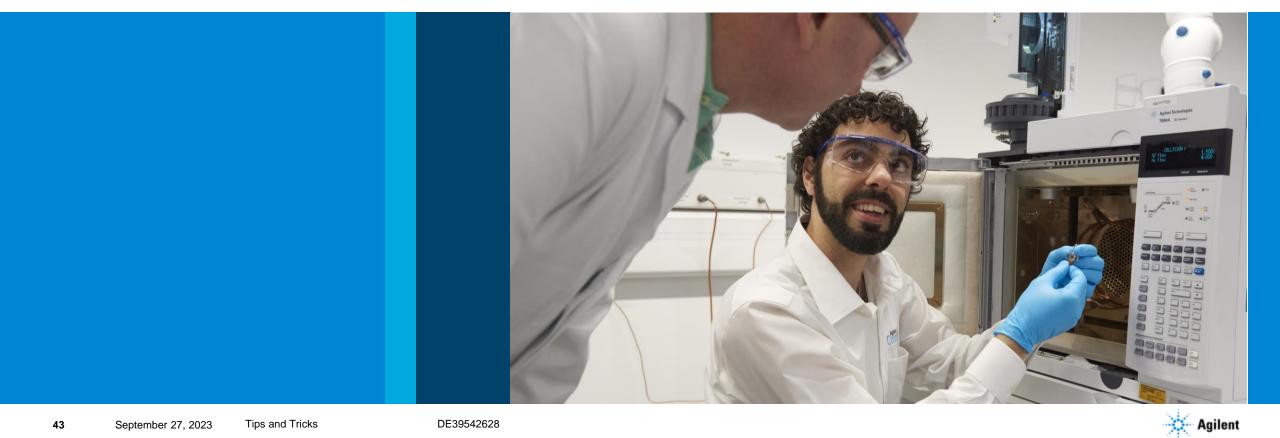




# **Standards Selection**

Agilent ULTRA Chemical Standards have:

- Excellent online search, compare, and ordering capabilities
- Rapid shipping: 99.9% of orders are dispatched within 24 to 48 hours (continental U.S. only, as of now)
- Custom standard solutions, including our online custom quoting tool, enabling customers to upload recipe formulations and to modify the recipe before submitting it
  - The tool allows customers to see the quote pricing instantly and lets them check the pricing based on quantity range
  - Discover more at <u>www.agilent.com/en/product/chemical-standards</u>
- Rigorously tested and manufactured under ISO 9001, ISO 17025, and ISO 17034 accreditation
- Sample preparation materials, columns, supplies, instrumentation, and reference materials from a single source






**Tips and Tricks** 

42

Proper Care of Your Column



# **Common Causes of Column Performance Degradation**

- Physical damage to the polyimide coating
- Thermal damage
- Oxidation (O<sub>2</sub> damage)
- Chemical damage by samples
- Contamination





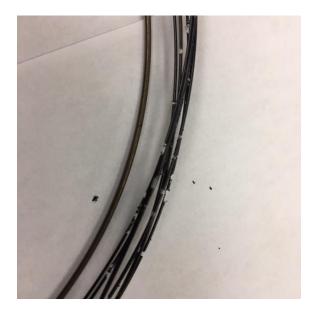


# Physical Damage to the Polyimide Coating

- The smaller the tubing diameter, the more flexible it is
- Avoid scratches and abrasions
- Immediate breakage does not always occur upon physical damage





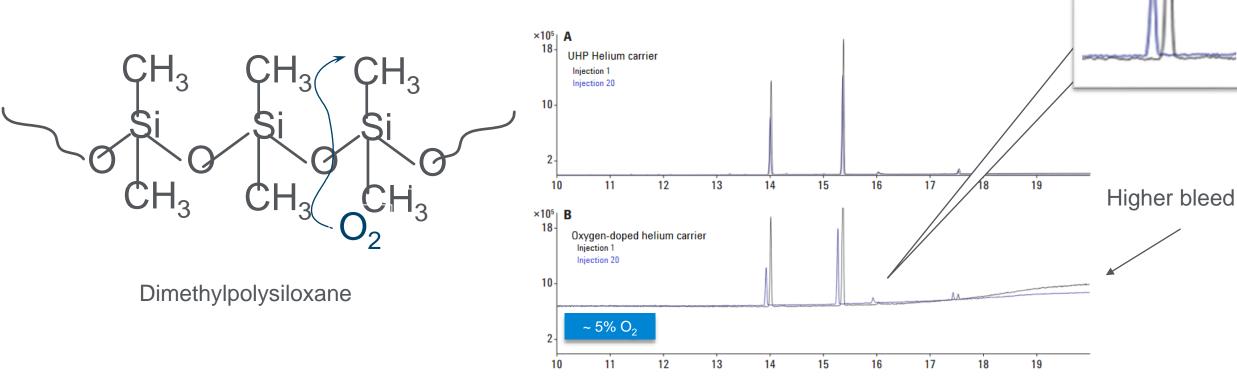

# **Thermal Damage**

#### Degradation of the stationary phase increases at higher temperatures

 Rapid degradation of the stationary phase (breakage along the polymer backbone) is caused by excessively high temperatures

> Isothermal limit = indefinite time Programmed limit = 5 to 10 minutes

- Temporary "column failure" below lower temperature limit
- If this happens:
  - Disconnect the column from the detector
  - "Bake out" overnight at the isothermal limit
  - Remove 10 to 15 cm from the column end




Column continuously exposed to temperatures above its temperature limit

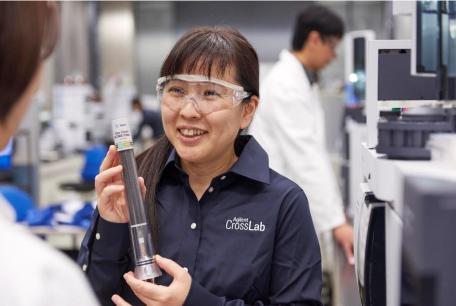


# Oxidation (O2 Damage)

Oxygen in the carrier gas rapidly degrades the stationary phase. The damage is accelerated at higher temperatures. Damage along the polymer backbone is irreversible. (Premature filament failure/excessive source maintenance.)



DE39542628




Decreased retention

# How to Prevent Column Damage by Oxygen

- High-quality carrier gas (four 9s or greater)
- Leak free injector and carrier lines
  - Change septa
  - Maintain gas regulator fittings
- Appropriate impurity traps







Efficient, fast, easy





#### **Chemical Damage**

Bonded and crosslinked columns have excellent chemical resistance except for inorganic acids and bases.

# HCI $NH_3$ KOH NaOH $H_2SO_4$ $H_3PO_4$ HF

Chemical damage will be evident by excessive bleed, lack of inertness or loss of resolution/retention.

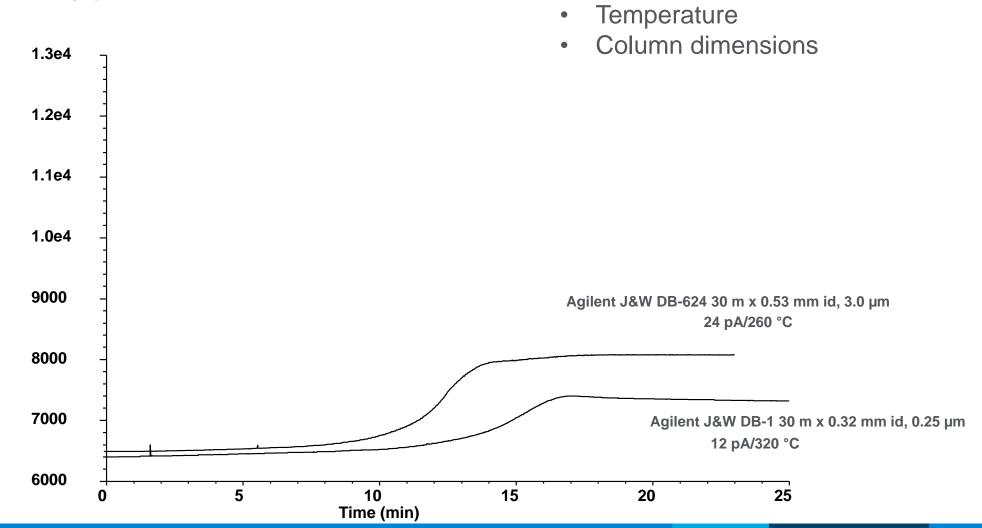




### Chemical Damage What to do if it happens

- Remove 0.5 to 1 m from the front of the columns
- Severe cases may require removal of up to 5 m



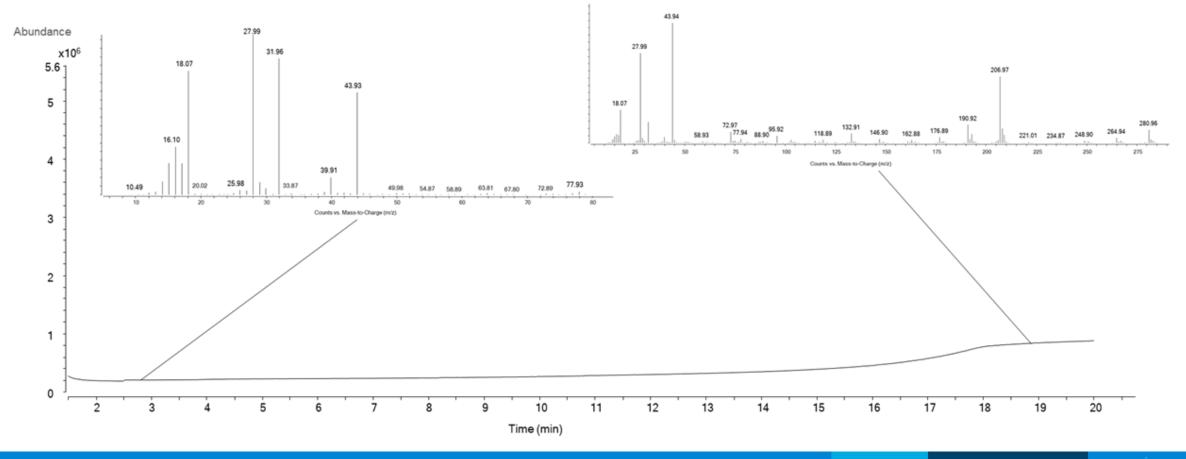







# What is Normal Column Bleed?

Normal background signal is generated by the elution of normal degradation products of the column stationary phase. Column bleed is influenced by: • Phase type








#### Mass Spectrum of Phenylmethylpolysiloxane Column Bleed Normal background (HP-5ms UI)

DE39542628





# What is a Bleed Problem?

An abnormal elevated baseline at high temperature

It is not:

- A high baseline at low temperature
- Wandering or drifting baseline at any temperature
- Discrete peaks



# **Column Contamination and Symptoms**

- Fouling of GC and column by contaminants
- Mimics nearly every chromatographic problem

- Poor peak shape
- Loss of separation (resolution)
- Changes in retention
- Reduced peak size
- Baseline disturbances (semivolatiles only)



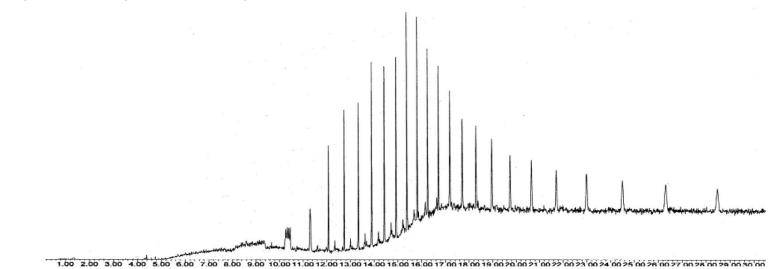
# Typical Samples That Contain a Large Amount of Residues

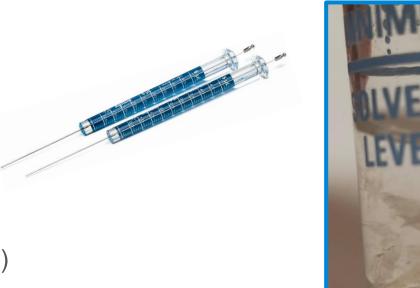
#### Soils Foods Plants Sludges Wastewater

#### All samples contain residues (even standards)








# **Other Sources of Contamination**

- Septum and ferrule particles
- Gas and trap impurities
- Unknown sources (such as vials and syringes)

Sample vial septum bleed profile:







Contaminated wash solvent

DE39542628

# **Types of Residues**

Nonvolatile residues

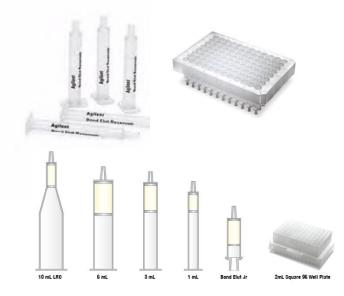
• Any portion of the sample that does not elute from the column or remains in the injector.

Semivolatile residues

• Any portion of the sample that elutes from the column after the current chromatographic run.



# Methods to Minimize Nonvolatile Residue Problems


- Sample cleanup
- Packed injection port liners
- Guard columns







# Offline Options for Sample Matrix Removal



Bond Elut solid phase extraction cartridges and plates



Filter vials



QuEChERS



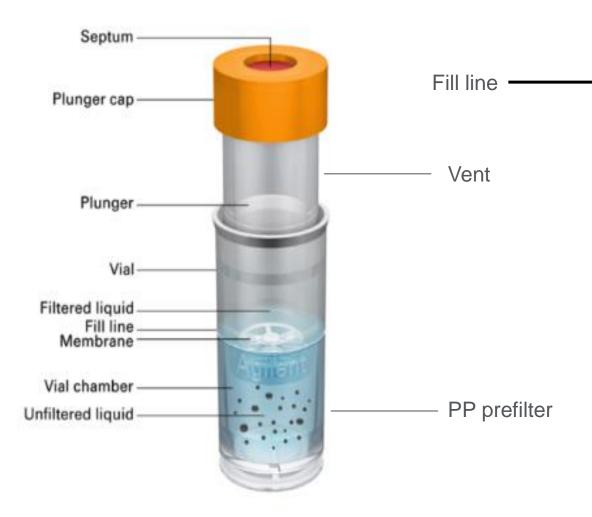
SPME



Captiva EMR-Lipid filtration cartridges and plates



Chem Elut S




Captiva syringe filters

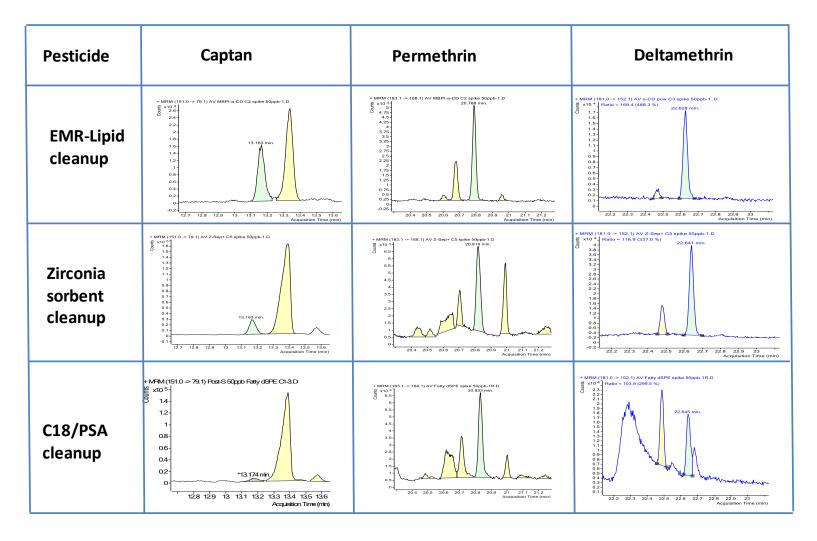




# Filtration – Captiva Filter Vials



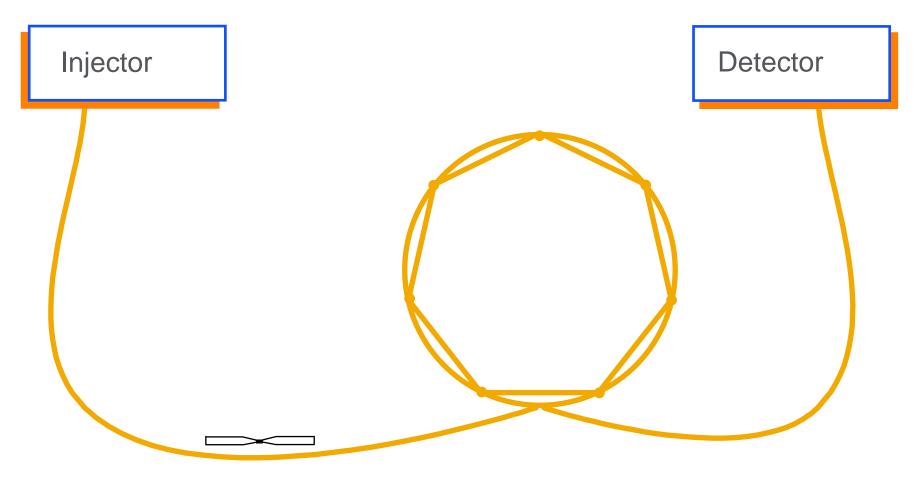
See appendix for solvent compatibility poster request




| Part Number | Description                        |
|-------------|------------------------------------|
| 5191-5933   | PTFE filter vial, 0.45 µm, 100/pk  |
| 5191-5934   | PTFE filter vial, 0.20 µm, 100/pk  |
| 5191-5935   | Nylon filter vial, 0.45 µm, 100/pk |
| 5191-5936   | Nylon filter vial, 0.20 µm, 100/pk |
| 5191-5939   | RC filter vial, 0.45 µm, 100/pk    |
| 5191-5940   | RC filter vial, 0.20 µm, 100/pk    |
| 5191-5941   | PES filter vial, 0.45 µm, 100/pk   |
| 5191-5942   | PES filter vial, 0.20 µm, 100/pk   |
| 5191-5943   | Vial closure tool                  |

Agilent.com/chem/filtervials Filter vials user guide: 5994-0814EN




# Captiva EMR–Lipid Cleanup Improves S/N Ratio and Integration Accuracy on GC/MS(/MS) of Pesticides in Olive Oil



DE39542628



# **Guard Column or Retention Gap**



The guard column is 3 to 5 m of deactivated fused silica tubing with the same diameter as the analytical column. It is connected with a zero dead volume union.



## Nonvolatile Contamination What to do if it happens

- Do not "bake out" the column
- Front end maintenance
  - Clean or change the injector liner
  - Clean the injector
  - Cut off 0.5 to 1 m of the front of the column
- Turn the column around
- Cut the column in half





#### Semivolatile Contamination What to do if it happens

- "Bake out" the column
  - Limit to 1 to 2 hours
  - Longer times may polymerize some contamination and reduce column life
- Solvent rinse the column





# Instrumentation: Leveraging Intelligence Innovations





#### Introducing the Agilent 8890 GC System Flexible and expandable to meet your needs today and tomorrow

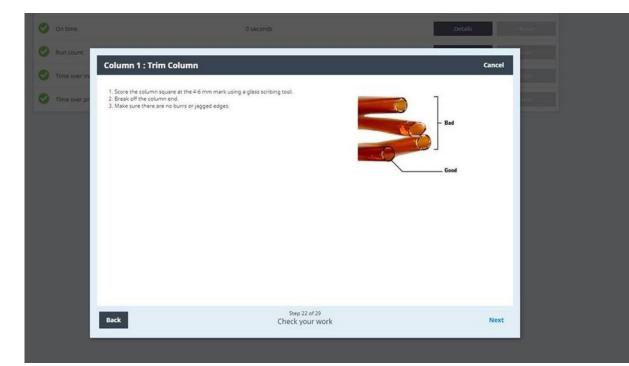


#### Future-proof: ready for anything

- Powerful next generation electronic architecture
- Expanded smart-connected functionality
- Full suite of inlets, detectors, and accessories, CFT, Deans switch, backflush, GC x GC, dual simultaneous injection
- Six valves, eight heated zones, plus LVO
- Generation 6 precision EPC
- Smart keys
- 7-inch color touch display






#### Agilent 8890 GC System Smart-connected GC

#### Modern intuitive interface

- 7-inch color touch screen
  - Configuration
  - Status
  - Methods
  - Sequence info
  - Troubleshooting, diagnostics, and help
- Real-time chromatographic evaluation
  - Blank evaluation
  - Detector evaluation

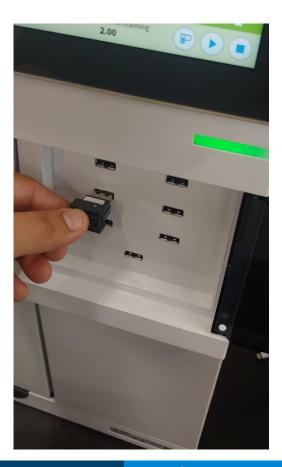


# Examples of Guided Troubleshooting/Step-by-Step Guides on the Agilent 8890 GC System








# GC Columns with Smart Key (for the Agilent 8890 GC Only)

#### For immediate identification and use monitoring of your GC column

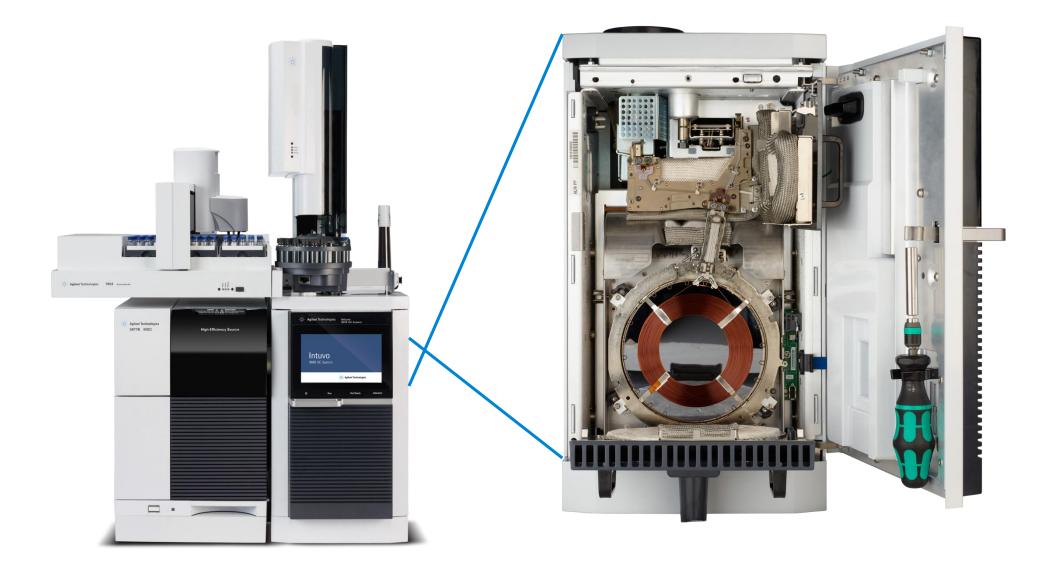
- Available with the Agilent 8890 GC model only
- Can track the use of a GC column
- Smart key contains GC column information, including:
  - Part and serial numbers
  - Number of injections/runs
  - Time at/above temperature limits
  - Date installed
  - Temperature limits GC columns
    - If more than one column is installed, temperature is determined by the lowest column smart key installed (DB-WAX vs DB-5)
  - Column length/trimming is done/edited in "column maintenance mode" in the software and rewritten to the smart key

S/N of last instrument the key was installed in if it was in an Agilent 8890 GC








# **Other Resources**

|   | Resources                                            | Weblinks                                                                                                           |
|---|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 1 | Agilent 8890 GC brochure                             | URL:<br><u>www.agilent.com/cs/library/brochures/brochure-</u><br><u>gc-8890-5994-0476en-agilent.pdf</u>            |
| 2 | Smart key product page (not for ordering smart keys) | URL:<br>www.agilent.com/chem/smartkey8890                                                                          |
| 3 | Instruction sheet                                    | URL:<br>www.agilent.com/cs/library/instructionsheet/publi<br>c/insert-smart%20key-8890-5994-0700en-<br>agilent.pdf |

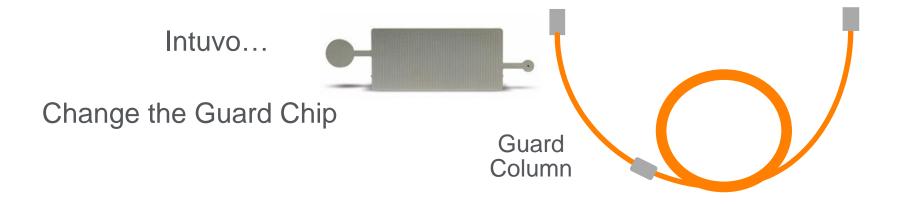


Agilent

# Agilent Intuvo 9000 GC System

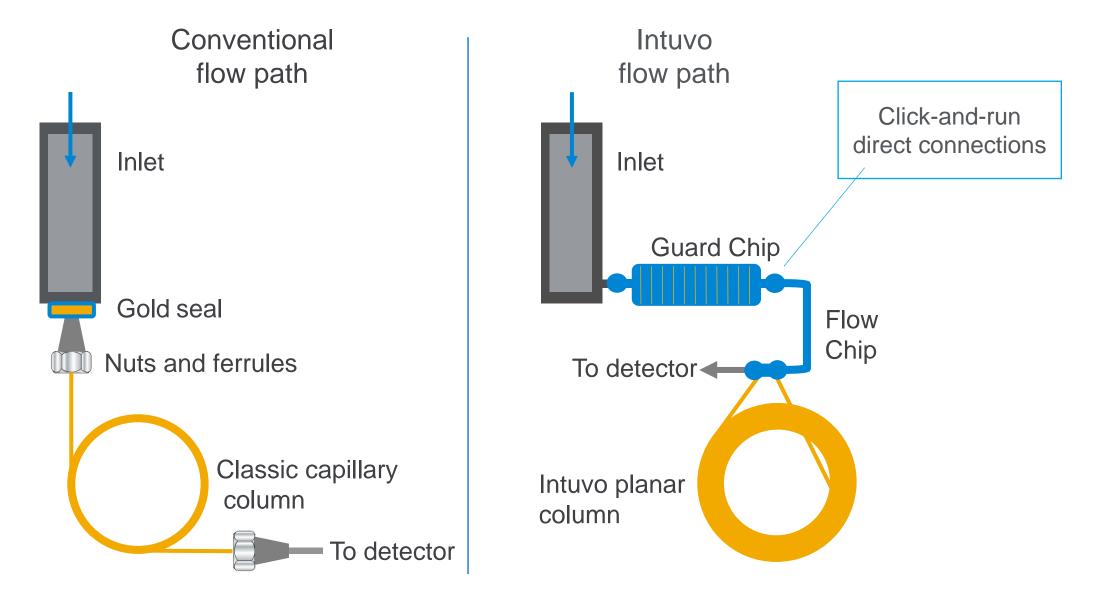


DE39542628




# Common Frustrations with GC

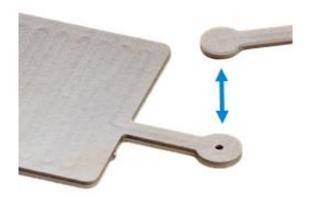
- Measuring column length correctly
- Cutting your column correctly
- How tight is too tight?
- Clipping columns to deal with active sites, then updating retention times


# Common Care and Maintenance Scheme for GC Columns

- 1. Cut off 6 inches to 1 foot from the inlet end of the column
- 2. Bake out the column for no more than 2 hours
- 3. Cut off more of the column (repeat as necessary)



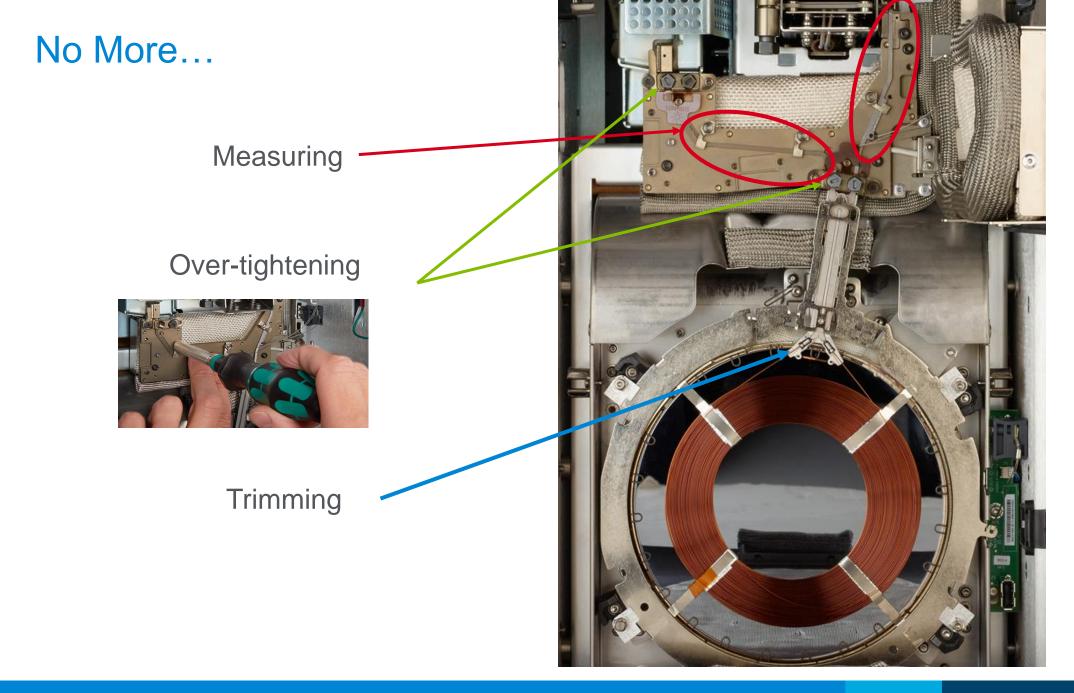



# Innovating the GC Flow Path



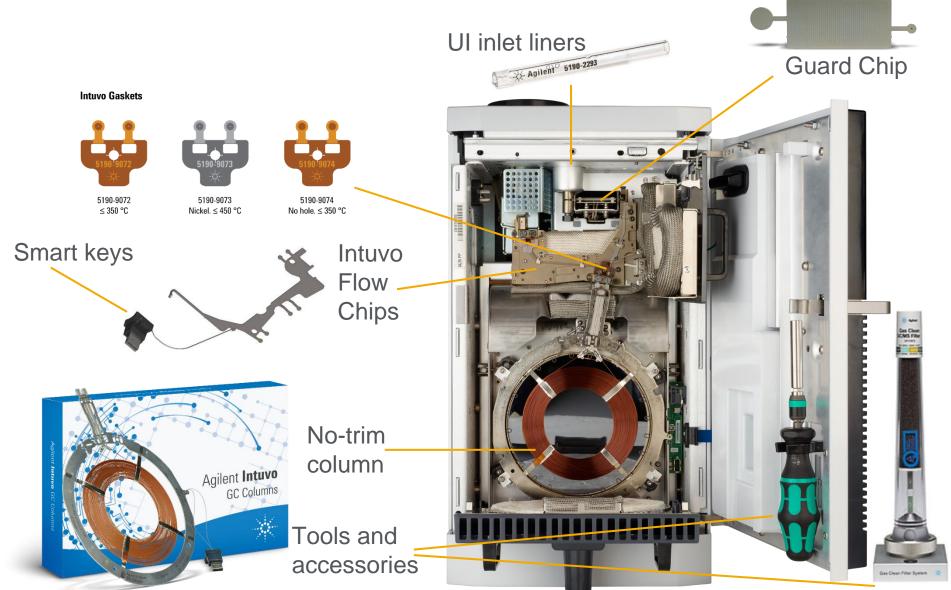


# Easier and Faster Maintenance with Intuvo


- No more ferrules
- Direct face seal connections
- Audible and tactile click lets you know when a connection is made
- Less unplanned downtime
- Fewer batch reruns, fewer samples lost



DE39542628



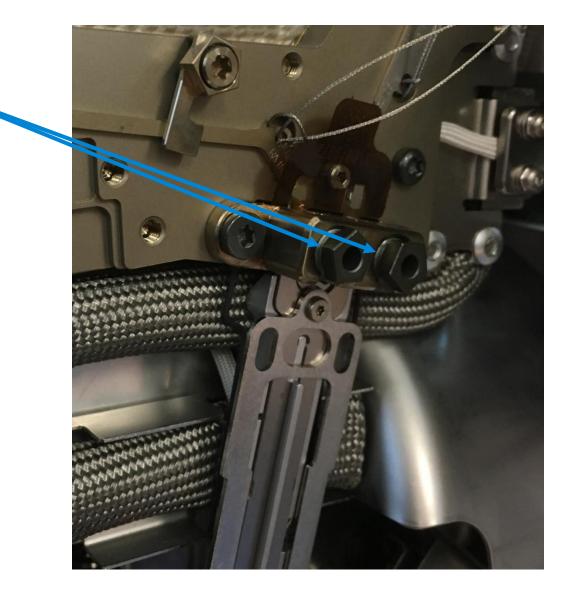







# A New Portfolio of GC Consumables






# Tips to Ensure a Good Column Installation

DE39542628

Finger tighten until only one thread on each of the two nuts is showing.

If more than one thread is showing, wiggle or reposition the column into place to further finger tighten the nuts to one thread.





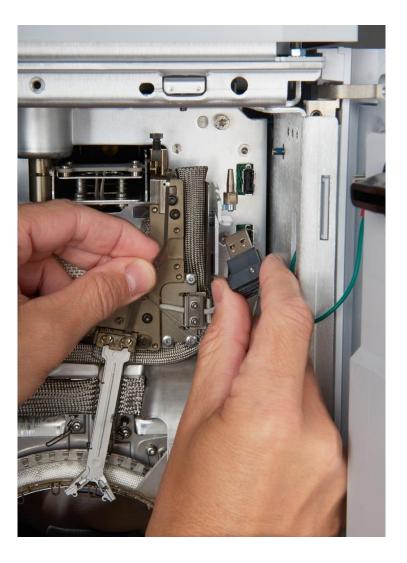
# Tips to Ensure a Good Column Installation

Check that the small, integrated column nuts on the column are in form fitted place on the heater, in the instrument.

Click and run.








# Smart Key Technology

- A smart chip tells your Intuvo what you have
- It also sets temperature limits for you
- You can keep track of performance with smart key



DE39542628





#### Agilent Intuvo 9000 Videos

## <u>The Agilent Intuvo 9000 GC System – Environmental Science Corporation (ESC)</u> Discover higher GC productivity with the Agilent Intuvo 9000 GC system Playing time: 4:00

The Agilent Intuvo 9000 GC System Story Learn more about the Agilent Intuvo 9000 GC System Playing time: 2:21

The Agilent Intuvo 9000 GC System: Return on Investment. Return on Innovation A testimonial about the return on investment on the Agilent Intuvo 9000 GC System

Playing time: 4:17



# **Always Remember**

- Start with a good installation
- Maintain an oxygen-free system
- Avoid physical, thermal, and chemical damage

DE39542628

• Take steps to prevent contamination





# **Contact Agilent Chemistries and Supplies Technical Support**



1-800-227-9770 option 3, option 3:
Option 1 for GC and GC/MS columns and supplies
Option 2 for LC and LC/MS columns and supplies
Option 3 for sample preparation, filtration, and QuEChERS
Option 4 for spectroscopy supplies
Option 5 for chemical standards
Available in the U.S. and Canada 8–5, all time zones



gc-column-support@agilent.com lc-column-support@agilent.com spp-support@agilent.com spectro-supplies-support@agilent.com chem-standards-support@agilent.com

DF39542628

