

ThermoFisher SCIENTIFIC

Chemical Profiling and Differential Analysis of Whiskies using Exactive[™] GC Orbitrap[™] GC-MS

Elena Ciceri

Sales Support Expert GC/GC-MS

The world leader in serving science

- Introduction to whisky adulteration
- Technology solution
- Study details
- Results
- Conclusions

- Chemical profiling of whisky is required:
 - Quality control of whisky for consistent product
 - Understand how aging and storage impacts the final taste and odour of the finished product.
 - Combat adulteration/counterfeiting is a significant threat.

SCIENTIFIC

*Scotch Whisky Association, 2015. **Distilled Spirits Council USA, 2015.

Whisky Adulteration

- Three common types of adulteration:
 - 1. <u>Artificial colouring</u> to simulate the aging process. Can also be achieved by heating during the aging process to speed up the colouration.
 - 2. <u>Substitution</u> of an alternative spirit with chemicals artificially added to simulate whisky flavours and colour. No control over these chemicals.
 - Refilling <u>labelled</u> bottles with either a cheaper genuine whisky or an artificial whisky. i.e., 5 year whisky into a 18 year whisky labelled bottle, or blended whisky into single malt labelled bottle.

Orbitrap[™] GC-MS: The Technology

Orbitra™p mass analyzer <

Incredible HRAM performance

Extended Dynamic Range

Thermo Scientific[™] Trace 1310 GC system

Unique modular injector and detector design

Short cycle time

Thermo Scientific[™] ExtractaBrite[™] ion source technology

Routine grade robustness

Patented RF lens

Removable without breaking vacuum through VPI

Vacuum-free column replacement through VPI

Bringing GC and Orbitrap[™] Technology Together

Two Options in the Orbitrap[™] GC-MS Family

Redefining Routine GC-MS

RP 60,000 (FWHM @ *m*/z 200)

EI/CI; Full-scan; Timed-SIM

Thermo Scientific[™] Exactive[™] GC system

Thermo Scientific[™] Q Exactive[™] GC system

Unprecedented Depth in Analysis

RP 120,000 (FWHM @ *m*/z 200)

EI/CI; Full-scan, Timed-SIM

MS/MS capability

Analytical Approach in This Proof of Concept Study

- Are there any chemical differences between whisky samples?
 - Bourbon or Scotch Whisky
 - USA or Scotland, Highland or Lowland
 - 10,15, 18 year aging
- Approach was to run full scan analysis under generic GC conditions and use software tools to identify.
 - if there are differences: Using statistical software i.e, Compound Discoverer[™]
 - what the differences are:

Using software tools including NIST libraries, deconvolution software and elemental composition and fragment matching software

Experimental – Whisky Profiling

Experimental - Samples

- 9 whisky extracts in ethyl acetate analysed 4 times in random order
- Pool sample prepared from 20 µl each whisky
- Run at 60,000 resolution on Thermo Scientific[™] Q Exactive[™] GC system

Sample ID	Туре	Age	Country of Origin	Region
2263	Single	12	Scotland	Lowlands
2264	Single	18	Scotland	Lowlands
2265*	Single	NAS	Scotland	Lowlands
2281	Single	10	Scotland	Campbeltown
2282	Single	15	Scotland	Campbeltown
2283	Single	15	Scotland	Campbeltown
2284	Single	12	Scotland	Highland
2285	Single	18	Scotland	Highland
2295	Bourbon	-	USA	Kentucky

- Thermo Scientific[™] Q Exactive[™] GC Hybrid Quadrupole-Orbitrap[™] Mass Spectrometer
- Sample introduction was performed using a Thermo Scientific[™] TriPlus[™] RSH Autosampler, and chromatographic separation was obtained with a Thermo Scientific[™] Trace[™] 1310 GC.
- Data was processed using the Compound Discoverer 2.1 Peaks investigated in Thermo Scientific[™] TraceFinder[™] deconvolution software.

Results – Whisky Profiling

TIC Whisky Sample

F:\Work\...\8April_60K_Whisky_025

Differential Analysis Workflow

Experiment definition (sample grouping)

Data export

ID in TraceFinder

Data review (based on %CV, p-values)

Data processing (peak alignment & extraction)

Statistical analysis

Technical replicates in good agreement and clear differences between samples

Initial approach is to investigate the differences in the bourbon and 3 wood aged from other whiskies

Volcano plot between Bourbon and Single whisky

SCIENTIFIC

CD 2.1: Extracted ion chromatogram across all samples

Box Chart of Peak at 13.65 Minutes Across all Samples

Peak Detection and Candidate Matching

High Resolution Filtering

Candidate Compound	ls	Subset formulae	Acq m/z	Fragment ID	Theo m/z	Mass Error (ppm)
00	CH		147.9477	C ₅ Cl ₂ H ₂ O	147.9477	0.20277
	5113		148.9369	C₅CI[37]CIHO	148.9369	0.2679
	CI		149.9448	C₅CI[37]CIH ₂ O	149.9448	0.06602
			151.9419	C ₅ [37]Cl ₂ H ₂ O	151.9418	0.72528
ĺ	C.H.	CLO.	154.9895	C ₇ ClH ₄ O ₂	154.9894	0.38712
		301202	155.9974	C ₇ ClH ₅ O ₂	155.9973	0.89745
			157.9943	$C_7[37]ClH_5O_2$	157.9943	0.25381
Cr Ý	-		159.9479	C ₆ Cl ₂ H ₂ O	159.9477	0.87529
			161.9446	C ₆ CI[37]CIH ₂ O	161.9448	0.80213
H ₂ CÒ			162.9711	C6Cl ₂ H₅O	162.9712	0.36816
11300			163.9745	$C_5[13]CCl_2H_5O$	163.9745	0.3342
			164.9682	C ₆ CI[37]ClH₅O	164.9682	0.24186
			165.9716	C₅CCI[37]CIH₅O	165.9716	0.02832
	HRF Score =	∑ (m/z *Intensity) _e ∑ (m/z *Intensity) _o	xplained bserved	x 100%		
				-		

NIST Library Hit for Trans β Ionone

Pea	Peak Identification									
الله - الح الم - الم										
	Score	Matched Compound	Formula	CAS	SI	HRF Score	M+ m/z	M+	% Elements	Libra
	75.3	trans-β-Ionone	C13H20O	79-77-6	797	98.3576	192.15086	No	100	mainl
6	74.9	3-Buten-2-one, 4-(2,6,6-trim	C13H20O	14901-0	776	98.3576	192.15086	No	100	mainl
	73.4	Terephthalic acid, ethyl 2-iso	C19H20O4		673	99.8952	312.13561	No	100	mainl
	73.2	5-Methyl-2,4-diisopropylphe	C13H20O	40625-9	690	98.3576	192.15086	No	100	mainl
	73	Acetic acid, 6,6-dimethyl-2	C16H24O4		649	99.8952	280.16691	No	100	mainl
	72.9	Isophthalic acid, ethyl tridec	1 C23H32O4		648	99.8952	372.22951	No	100	mainl
✓ III									Þ	
Sp	Spectra									

Component spectrum

PCI Analysis to Confirm Parent Ion

Thermo Fisher SCIENTIFIC

Literature Search for Beta Ionone Supports

- Beta-ionone is a breakdown product of beta-carotene and expected to be found in whisky
- Bourbon brewed from corn; Scotch Whisky from barley
- Corn is higher in beta-carotene (53 µg/200g) compared to barley (7 µg/200g (Source: Nutritiondata.com)
- This would support the higher levels of beta-ionone found in our data

Article

Whiskey composition: formation of alpha-and beta-ionone by the thermal decomposition of beta-carotene

Earl G. LaRoe Paul A. Shipley Journal of Agricultural and Food Chemistry (Impact Factor: 3.11). 04/2002; 18(1). DOI: 10.1021/jf60167a012

PCA for Single Distillery But Different Years

Boxplot of Peak at 10.4 Minutes

Identify the Compound – Searching NIST 14

- Identification based on:
 - 1. Search index (717)
 - 2. High resolution filtering (HRF) 99.6% of spectrum explained based on $C_6H_6O_3$
 - 3. Combined score (SI & HRF) 94.2%

• Eliminates other hits that would be valid if only SI used.

Peak Identification										
-	- 🖲 🎮	-								
	Score	Matched Compound	Formula	CAS	SI	HRF Score	M+ m/z	M+	% Elements	
•	94.2	5-Hydroxymethylfurfural	C6H6O3	67-47-0	717	99.6216	126.03114	Yes	100	
	69.4	4-Ethyl-2-hydroxycyclopent	· C7H10O2	28017-6	708	88.0651	126.06753	No	100	
	68.5	2-Butyn-1-al diethyl acetal	C8H14O2	2806-97	662	88.0651	142.09883	No	100	Hvdroxvmethvl furfural
	67.9	Cyclopentanecarboxylic acid	C13H16O2	55229-4	630	88.1169	204.11448	No	100	
	67.3	Cyclopentanecarboxylic acid	C13H22O2		602	88.1169	210.16143	No	100	
	67.2	Cyclopentanecarboxylic acid	C12H13NO4		612	99.7754	235.0839	No	75	
	45.3	4-Hepten-3-one, 4-methyl-	· C8H14O	22319-3	699	28.2184	126.10391	No	100	b
	44.5	4-Hexen-3-one, 4,5-dimethyl-	· C8H14O	17325-9	658	28.2184	126.10391	No	100	
5	44.3	Furan, 2,3-dihydro-4-(1-met	C8H14O	34379-5	650	28.2184	126.10391	No	100	-OH

- Use the same identification process to build a chemical profile of a sample
- What is in my whisky sample?

11 912140 11 965417

= 1037 deconvoluted features

= 675 identified compounds

- Q Exactive GC provides a comprehensive chemical profile of a sample, detecting both <u>major</u> and <u>minor</u> components with a high degree of confidence
- In whisky, the chemical differences are rarely unique. However, the concentration of compounds does vary significantly between whiskies of different origins, ages and processes.
- Sophisticated, yet simple to use, software tools provides fast isolation of peaks of interest and intelligent compound identification with sub 1 ppm mass accuracy

Further Details in Application Note 10492 and poster

Chemical Profiling and Differential Analysis of Whiskies Using Orbitrap GC-MS

Dominic Roberts,1 Jana Hajslova,2 Jana Pukrabova,2 and Paul Silcock1 ¹Thermo Fisher Scientific, Runcorn, UK ²University of Chemistry and Technology, Prague, Czech Republic

Key Words

Chemical profiling, whisky, Q Exactive GC, Orbitrap mass spectrometry, differential and statistical analysis, marker identification, accurate mass

Introduction

Whisky is a premium spirit beverage that is distilled by following long established methods and has a complex aging process. It is produced by the mixing of various grains with water to form a mash that is fermented with yeast, distilled to generate an alcoholic distillate and finally matured in wooden barrels or casks,1 This is a complex and traditional process that results in a beverage that has both a high value and high degree of variability in the final product depending on many different factors. It is this variability that gives whisky the characteristics that are unique to a particular distillery or region. For example, whiskies produced on the West coast of Scotland often have a very smoky flavor, while those from the Speyside region can have characteristic honey, vanilla and fruit flavors2; in general terms, the production technology plays a significant role.

As a result of these distinguishing features and the rising global demand, whisky has become an economically important commodity in many regions of the world. The entire whisky industry is a major source of employment and tax revenues in these regions. For example, the whisky market is worth ~£5 billion to the UK economy,2 and in the USA, distilled spirits are collectively worth \$120 billion.4 As whisky has a high retail price, counterfeiting and/or adulteration is common and is a threat to the integrity of the industry. The adulteration can take many forms and can occur on both small and large scales. For example, one of the most extensive forms have taken many years to achieve.

of whisky to an alternative cheaper spirit to create an "artificial" whisky. This is of particular concern as there is no safety control over which chemicals are being added, their quality or concentration. Other forms of adulteration include the labelling of bottles with more expensive brands and falsely claiming the age for which the whisky was matured in the barrel. The latter type of adulteration can be performed either by the addition of artificial colors or by heating during the aging process to speed up the coloration. Both processes can appear to secure in a few months or days what otherwise would

- Jana Hajslova & Jana Pulkrabova ICT Prague, Czech Republic
- Cristian Cojocariu & Paul Silcock & Dominic Robert Thermo Fisher Scientific

Food & Beverage Resources

- Webinars
- Applications
- Blogs
- Regulatory updates
- White papers
- And more...

www.thermofisher.com/foodintegrity

