

Low level quantification of PCDD/Fs in animal feedstuffs using the Thermo Scientific TSQ 9000 GC-MS/MS system with AEI source

Runcorn, UK

PP10604

The world leader in serving science

- Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo-p-furans (PCDFs) commonly referred to as *dioxins*, are persistent environmental pollutants (POPs).
- Dioxins are ubiquitous in the environment and accumulate in the food chain, mainly in the fatty tissue of animals. Dioxins are highly toxic and can cause reproductive and developmental problems, damage the immune system, interfere with hormones and cause cancer.
- More than 90% of human exposure is through food ingestion, mainly meat and dairy products, fish and shellfish. Many national authorities have programmes in place to monitor the food supply.
- European Union (EU) legislation ensures strict limits are placed upon the maximum levels (MLs) which are allowable in foodstuffs and animal feed and food.

Challenges

- Due to the high toxicity and bioaccumulative nature of dioxins, accurate confirmation and quantification of PCDD/Fs in animal food and feedstuffs is essential to minimise human exposure.
 - Current EU legislation requires GC-MS/MS analytical methods to demonstrate compliance at 1/5th of the maximum levels (MLs), these include:

LOQ challenges

 $Y_{Critical} (\alpha = 0.05)$ Y_{Blank} $Y_{Sample} = Y_{LOD}(\alpha = \beta = 0.05)$ Y_{Sample} "The limit of quantification of an individual congener may be defined as... the lowest concentration point on a calibration curve that gives an acceptable $(\leq 30\%)$ and consistent (measured at least at the start and at the end of an analytical series of samples) deviation to the average relative response factor calculated for all points on the calibration curve in each series of samples (The LOQ is calculated from the lowest concentration point taking into account the recovery of internal standards and sample intake.)."

B=0.05 0=0.05

above LOD

- To assess the performance of the Thermo Scientific[™] TSQ[™] 9000 triple quadrupole GC-MS/MS system equipped with a new Advanced Electron Ionization (AEI) source for the analysis of PCDD/Fs in accordance with regulatory requirements.
- To show compliance at 1/5th maximum levels and demonstrate the sensitivity, selectivity and robustness required in order to operate in a routine environment.

 For all experiments described below, a Thermo Scientific TSQ 9000 triple quadrupole mass spectrometer with AEI source was used.

 Sample introduction was performed using a Thermo Scientific[™] TriPlus[™] RSH autosampler, and chromatographic separation was obtained with a Thermo Scientific[™] TRACE[™] 1310 GC system.

GC and Injector conditions

TRACE 1310 GC System	Parameters	
Injection Volume (µL):	2	
	Thermo Scientific [™] LinerGOLD [™] single taper with wool	
Liner:	(P/N: 453A0924-UI)	
Inlet (°C):	280	
Carrier Gas, (mL/min):	Не, 1.2	
Inlet Mode:	Splitless (split flow 120mL/min after 2 min)	
	Thermo Scientific™ TraceGOLD™ TG-Dioxin GC	
Column:	(60m x 0.25mm, 0.25μm) (P/N: 26066-1540)	
Oven Temperature Prog	ram	1210
Temperature 1 (°C):	120	TRACE 1310
Hold Time (min):	0	thermo crientific
Temperature 2 (°C):	250	
Rate (°C/min):	25	
Hold Time (min):	0	
Temperature 3 (°C):	285	
Rate (°C/min):	2.5	
Hold Time (min):	0	
Temperature 4 (°C):	320	
Rate (°C/min):	10	
Hold Time (min):	15	
Total Run Time (min):	39.7	

MS conditions

TSQ 9000 Mass Spectrometer Par	rameters	
Transfer Line (°C):	300	
Ionization Type:	EI – with AEI source	
Ion Source (°C):	300	
Electron Energy (eV):	50	
Acquisition Mode:	Timed SRM with Dwell Time Prioritization (x10 – natives HIGH, labelled LOW) Detector gain factor x7	thermo scientific
Tuning parameters:	AEI Full Tune (Default)	
Collision gas and pressure (psi):	Argon, 70 Posolution for a	
Resolution :	0.7 (both Q1 and Q3) equal to or bet than unit mas resolution (unit r resolution to sepa two peaks one m unit apart).	e set ter s nass ient arate nass

- Animal feedstuff samples (and relevant quality control samples and procedural blanks) were
 provided by the University of Liege. Sample types, weights and maximum levels allowed (ML) are
 given below.
- European method EN:1948 standard solutions (Wellington Laboratories Inc., Canada) were utilized for initial performance tests and for calibration and quantitation.

	Alfalfa	Pork Fat	Premix	Premix	Sheep	QC – Pork fat	QC - Feed (grass)
Sample intake (g)	32.13	4.57	10.17	11.1	2.55	6.8	20.71
Regulatory ML [WHO-PCDD/F-TEQ(pg/g)] *	0.75	1	1	1	2.5	1	0.75**
1/5th ML [WHO-PCDD/F-TEQ(pg/g)] *	0.15	0.2	0.2	0.2	0.5	0.2	0.15

* maximum limits taken from European directive 2002/32/EC⁽³⁾

** lower limit applied

Chromatography

Chromatography – Separation

TCDD/F congener separation on the TG-Dioxin (60m x 0.25mm, 0.25µm) column

Congener	Average RF from Calibration	RF standard deviation	RF RSD (%)	Calibration range (pg/µL)
2378-TCDF	1.06	0.06	5.6%	0.01 - 80
2378-TCDD	1.13	0.06	5.6%	0.01 - 80
12378-PeCDF	1.02	0.02	2.3%	0.02 - 160
23478-PeCDF	1.08	0.02	1.9%	0.02 - 160
12378-PeCDD	1.11	0.03	2.4%	0.02 - 160
123478-HxCDD	1.08	0.03	3.1%	0.04 - 160
123678-HxCDD	1.04	0.04	3.8%	0.04 - 160
123789-HxCDD	1.05	0.04	3.7%	0.04 - 160
123478-HxCDF	1.04	0.02	2.3%	0.02 - 160
123678-HxCDF	1.04	0.03	2.4%	0.02 - 160
234678-HxCDF	1.04	0.04	3.9%	0.02 - 160
123789-HxCDF	0.98	0.04	4.4%	0.02 - 160
1234678-HpCDF	1.09	0.02	1.8%	0.04 - 320
1234789-HpCDF	1.13	0.03	2.5%	0.04 - 320
1234678-HpCDD	1.16	0.08	7.3%	0.04 - 320
OCDD	1.15	0.05	4.5%	0.16 - 320
OCDF	0.99	0.06	5.8%	0.16 - 320

Example of response factors over 8 calibration injections for 2,3,7,8-TCDD

Response factor

Robustness

Ion ratios for the lowest level calibration standard (LOQ) showing compliance from the beginning of the sequence to the end.

> 2 specific precursor and one specific corresponding transition product ion for all labelled and native congeners.

Robustness – Ion ratio 2,3,7,8-TCDD

Ion ratios shown over the full calibration range (0.01 – 80pg/μL) for the two native 2,3,7,8-TCDD transitions

Robustness – Ion ratios for all native congeners

QC results

Sample: QC - feed					Sample: QC - feed		
	On column		LOO Upporbound WHO TEO	TSQ 9000 result Upperbound	Sample weight (g)	20.71	
Congener		2005)	PCDD/Es (2005) ng/g	WHO-TEQ-PCDD/Fs (2005)	Final volume (μL)	10	
		2003)	FCDD/13 (2003) pg/g	pg/g	Sample injection volume (µL)	2	
2378-TCDF	0.02	0.1	0.00048	0.02010	Standard injection volume (µL)	2	
2378-TCDD	0.02	1	0.00483	0.01884	EU ML (sum WHO-TEQ-PCDD/Fs [2005] pg/g)	0.750	
12378-PeCDF	0.04	0.03	0.00029	0.00304	1/5th EU ML	0.150	
23478-PeCDF	0.04	0.3	0.00290	0.06221	Expected sum WHO-TEQ-PCDD/Fs [2005]	0.039	
12378-PeCDD	0.04	1	0.00966	0.05556	pg/g derived from LOQ	0.028	
123478-HxCDF	0.04	0.1	0.00097	0.02632			
123678-HxCDF	0.04	0.1	0.00097	0.01530			
234678-HxCDF	0.04	0.1	0.00097	0.01606			
123478-HxCDD	0.08	0.1	0.00193	0.00389	The sum of the calcula	bote	
123678-HxCDD	0.08	0.1	0.00193	0.01723			
123789-HxCDD	0.08	0.1	0.00193	0.00556	upperbound values at the	∋ <i>LOQ</i> *	
123789-HxCDF	0.04	0.1	0.00097	0.00717	are significantly lower th	an the	
1234678-HpCDF	0.08	0.01	0.00019	0.01185			
1234678-HpCDD	0.08	0.01	0.00019	0.00101	1/5" EU maximum le	vei	
1234789-HpCDF	0.08	0.01	0.00019	0.01565	reauirements		
OCDD	0.32	0.0003	0.00002	0.00308			
OCDF	0.32	0.0003	0.00002	0.00033			
		SUM	0.02844	0.28319			٦
					QC result ~2/5 th of l	ML 🗸	
					All condonore > I	00	

* - (applying sample intake weight and assuming 100% IS recovery)

Sample results - Chromatography

Sample results

1.200

	Alfalfa TSQ 9000 AEI	Premix TSQ 9000 AEI	Premix TSQ 9000 AEI	Pork fat TSQ 9000 AEI	Sheep TSQ 9000 AEI	Sheep GCHRMS
Upperbound SUM PCDD/Fs WHO TEQ (pg/g)	0.064	0.059	0.054	0.129	4.999	4.815
Lowerbound SUM PCDD/Fs WHO TEQ (pg/g)	N/A	N/A	N/A	N/A	4.987	4.756
Maximum Level (TEQ pg/g)	0.750	1.000	1.000	1.000	2.500	2.500
1/5th ML (TEQ pg/g)	0.150	0.200	0.200	0.200	0.500	0.500

For the samples with values less than the ML, the calculated Upperbound SUM PCDD/Fs WHO-TEQ (pg/g) comfortably fall below the 1/5th ML requirements as stated by EU regulations.

For the samples with values greater than the ML, the calculated Upperbound SUM PCDD/Fs WHO-TEQ (pg/g) is in excellent agreement with GCHRMS data acquired

- Chromeleon[™] 7.2 Chromatography Data System (CDS) software was used for instrument control, data acquisition, processing and reporting.
- One-click Thermo Scientific[™] eWorkflows[™] available for simplified method, sequence creation and reporting.
- Integration with Thermo Scientific[™] SampleManager LIMS[™], SDMS and LES to manage the complete laboratory workflow.

Conclusions

- The **sensitivity** achieved with the with the AEI source was proven to be repeatable and **robust** throughout a continuous two day analytical sequence.
 - Lowest detectable amount of TCDD <0.6 fg on-column.
 - On-column LOQs between 20 fg (TCDD/TDCF) and ~300 fg (OCDD/OCDF). This shows compliance with the regulations for sample intake weights as low as 5g for feed samples.
 - With this level of sensitivity Upperbound SUM PCDD/Fs WHO TEQ (pg/g) values of <0.06pg/g are routinely achieved in real matrix samples (ex: animal feed).
- The stability and repeatability of the ion ratios and response factors generated provide confidence in results at the lowest quantifiable levels.
 - Ion ratios were consistently <±15% throughout entire sequence for all native and labelled congeners.
 - Response factor RSDs between 1.8 7.3% were achieved over the entire calibration range (0.01 80 pg/μL to 0.16 320 pg/μL)
- The reported upperbound WHO-TEQ results reported for low level samples below the MLs were significantly lower than the 1/5th MLs required, giving both reassurance and flexibility when analysing multiple sample types.
- The TSQ 9000 GC-MS/MS system configured with the AEI source satisfies all of the current EU commission requirements for the detection and confirmation of dioxins in food and feed samples.

