

Poster Reprint

ASMS 2021 Poster number FP187

Comparing Volatile Compounds Among Brands of Argentinian Yerba Mate (*Ilex paraguariensis*) Using High-resolution GC/ Q-TOF

Sofia Nieto, Melissa Churley

Agilent Technologies, Santa Clara, CA

Introduction

Yerba mate, a traditional South American herbal tea is brewed from the leaves and stems of the *llex* paraguariensis plant. This beverage contains the stimulant caffeine and other bioactive compounds and has gained a wide popularity worldwide. It had been shown that yerba mate growing conditions are a significant factor in the biochemical composition of the final product (1). During processing, the plant is rapidly heated to deactivate enzymes (blanching), dried and aged, which also affects the aroma and chemical composition of yerba mate. This leads to the obvious question about the complexity of the chemical profile of yerba mate and whether different brands of yerba mate could be distinguished through analytical techniques. In this study, high resolution GC-QTOF data were used to analyze yerba mate extracts of four different brands. In total, 386

compounds were identified of which 76 are newly identified compounds in yerba mate with library match scores of 90 or above.

Experimental

All yerba mate samples were from Argentina. The samples were extracted in three to six replicates using a standard QuEChERS protocol and analyzed using a 7890 GC coupled to the 7250 high-resolution Q-TOF MS in full acquisition mode. The parameters are described in detail in Table 1. Unknowns Analysis tool (of MassHunter Quantitative Analysis Software 10.2)

GC and MS Conditions:	Q-TOF (7250)					
GC	7890					
Column	30-5MS UI, 15 m, 0.25 mm, 0.25 μm					
Inlet	MMI, 4-mm UI liner single taper w wool					
Injection volume	1 µL					
Injection mode	Splitless					
Inlet temperature	280°C					
Oven temperature program	50°C for 2 min; 10°C/min to 300°C, 10 min hold					
Carrier gas	Helium					
Column flow	1.2 mL/min					
Transfer line temperature	300°C					
Quadrupole temperature	150°C					
Source temperature	200°C					
Electron energy	70 eV					
Emission current	5 µA					
Spectral acquisition rate	5 Hz					
Mass range	45 to 650 m/z					

Experimental

was used to perform accurate mass feature finding with SureMass algorithm followed by compound identification with NIST17.L and NIST 20.L libraries (Figure 1). Retention Index and accurate mass information were used to confirm the compound identity. The data were further imported to Mass Profiler Professional (MPP) 15.1 for further statistical analysis and visualization of the data.

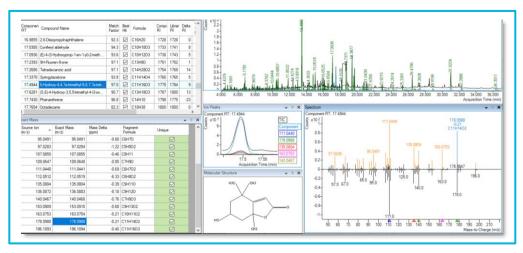


Figure 1. Feature funding, compound identification and verification using Unknowns Analysis. The highlighted compound is 6-Hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one (Loliolide)

Results and Discussion

Yerba Mate Profiling Results

The compounds identified in yerba mate samples from four different brands (designated A, B, C and D here) were grouped based on compound classes (Figure 2). The majority of the identified compounds were phenolic compounds (mostly methoxyphenols) and terpenoids. Of the compounds identified with the library match score >90, seventy six have not been previously reported in yerba mate (Table 2).

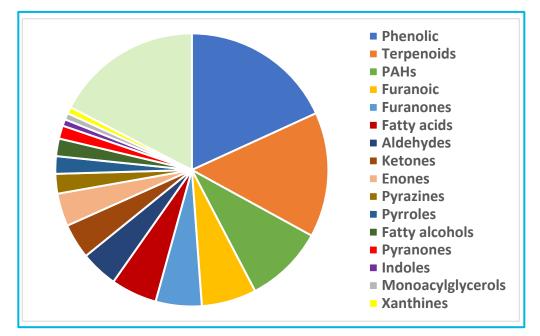


Table 1. GC/Q-TOF acquisition parameters.

Figure 2. Classes of compounds identified in yerba mate samples

2

Results and Discussion

	Match				Match				Match					Match	<u>ا</u>
RT Compound Name	Factor		RT		Factor	RI	RT	Compound Name	Factor	RI	R	то	Compound Name	Factor	
4.310 N-Vinvlimidazole	96	796		2-Ethyl-1-hexanol	95	1030		3 3-Methylcatechol	93	1252			ndole-3-acetaldehvde	91	1704
4.426 2-Ethyl-2-butenal	93	804		Dimethyl succinate	95	1030		3 2-Methyl-2-vinvlmaleimide	94	1257			-Hydroxy-3-(4-hydroxy-3-methoxyphenyl)-2-propanone	90	1721
4.428 Furfural	99	807		3,4-Dimethyl-2,5-furandione	93	1031		Nonanoic acid	95	1260			Acetosyringone	91	1726
4.7232-Furanmethanol	99	836		2-Acetyl-5-methylfuran	98	1034		6 (E)-Cinnamaldehvde	93	1276			Coniferyl aldehyde	96	1733
4.9694-Methyl-1-pentanol	91	861		Benzyl alcohol	98	1034		5 4-Methyl-5-thiazolethanol	92	1279			rans-Conifervl alcohol	93	1737
4.9705-Methyl-2(3H)-furanone	94	859		trans-B-Ocimene	90	1038		4-Methylcatechol	93	1281			H-Fluoren-9-one	92	1751
5.048 N-Ethylacetamide	91	868		Lavender lactone	92	1039		5 Salicylic acid	93	1286			etradecanoic acid	97	1754
5.1654-Cyclopentene-1,3-dione	99	880		α-Ocimene	96	1049		3 Indole	96	1294			vringvlacetone	93	1760
5.494 3-Methylcyclopentyl acetate	97	908		v-Caprolactone	90	1053		6 4-Vinylguaiacol	97	1312			-Hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one	97	1774
5.5822(5H)-Furanone	99	913		2-Acetylpyrrole	99	1062		9 Syringol	93	1346			henanthrene	94	1797
5.6102-Acetylfuran	99	915		y-Terpinene	95	1062) Eugenol	91	1354			H-Indole-3-carboxaldehyde	91	1807
5.616 Butyrolactone	93	915		Heptanoic acid	93	1068		3 n-Decanoic acid	94	1357			leophytadiene	96	1837
5.6762.5-Dimethylpyrazine	94	918		(E.E)-3.5-Octadien-2-one	93	1070		3 Pyrogallol	90	1368			lexahydrofarnesyl acetone	96	1842
5.7642,3-Dimethylpyrazine	91	923	-	1-Octanol	94	1072		5 4-Ethylcatechol	94	1374			arnesyl acetone	93	1912
5.8722.5-Hexanedione	94	930		p-Cresol	95	1072		2 B-Damascenone	91	1383			-Hexadecanoic acid	98	1957
6.0172-Vinylpyrazine	91	939		cis-Linalool oxide	95	1075) Vanillin	99	1396			Iomovanillic acid methyl ester	95	1958
6.0185-Methyl-2(5H)-furanone	98	939		2.5-Furandicarboxaldehvde	94	1076		5 1,2-Dihydro-1,4,6-trimethylnaphthalen		1401			rans-Sinapaldehyde	94	1980
6.2495,5-Dimethyl-2(5H)-furanone	99	952		Furyl hydroxymethyl ketone	95	1081		2 6.10-Dimethyl-2-undecanone	91	1402			rans-Sinapyl alcohol	96	1989
6.2872-Pyridinecarboxaldehyde	90	953		trans-Linalool oxide (furanoid)	93	1090		α -lonone	91	1426			/erimol K	94	2053
6.454 5-Methyl furfural	99	964		Linalool	96	1101		7 Geranyl acetone	93	1448			luoranthene	95	2083
6.511 Benzaldehvde	99	967		6-Methyl-3.5-heptadiene-2-one	93	1101		3 trans-Isoeugenol	95	1449			-Octadecanol	92	2084
6.5143-Hydroxyisovaleric acid	90	968		Maltol	95	1109		7 Dehydro-β-ionone	94	1480			Aethyl oleate	90	2099
6.5782H-Pyran-2-one	91	971		Phenylethyl Alcohol	93	1114		5 Apocynin	97	1484			-Palmitolactone	91	2104
6.661 Hexanoic acid	96	976		Neo-Allo-Ocimene	96	1131		7 β-lonone-5.6-epoxide	91	1487			lyrene	95	2107
6.705 Phenol	98	979		Pyranone	97	1143		2 Levoglucosan	94	1494			hytol	97	2108
6.760 isomaltol	90	981		2,6,6-Trimethyl-2-cyclohexene-1,4-dione	91	1147		3 Isobutyl 4-hydroxybenzoate	90	1511			Detadecanoic acid	93	2157
6.7762.4-Dihydroxy-2.5-dimethyl-3(2H)-furan-3-one	96	983		Octanoic acid	94	1164		Guaiacylacetone	91	1525			ributyl acetylcitrate	96	2243
6.8456-Methyl-5-hepten-2-one	92	987		1-Nonanol	97	1171		Dihydroactinidiolide	92	1539			,8,12,16-Tetramethylheptadecan-4-olide	93	2349
6.888 B-Myrcene	91	990		2,4-Dimethoxybenzaldehyde	92	1178	-	7 Isovanillic acid	91	1553			sopimaric acid	92	2412
6.9302H-Pyran-2,6(3H)-dione	97	992		5-Hydroxymaltol	91	1179		3 2,6-Dimethoxy-4-ethenylphenol	97	1560			vclopenta[cd]pyrene	95	2417
7.051 (E,Z)-2,4-Heptadienal	95	999		Catechol	99	1186		5 1.6.7-Trimethylnaphthalene	90	1570			-Palmitoylglycerol	95	2508
7.170 Octanal	91	1006		Naphthalene	91	1192		9 Butyrovanillone	94	1583			E)-3,3'-Dimethoxy-4,4'-dihydroxystilbene	96	2656
7.175 N-Methylpyrrole-2-carboxaldehyde	92	1006		Methyl salicylate	97	1196		2 Methoxyeugenol	90	1594			-Glyceryl monostearate	91	2717
7.2381H-Pvrrole-2-carboxaldehvde	93	1011		L-a-Terpineol	93	1199		3 3.4.5-Trimethoxyphenol	93	1596			qualene	97	2815
7.294 (E,E)-2,4-Heptadienal	91	1014		Safranal	94	1203		5 3-Hydroxy-β-damascone	92	1613			r-Tocospiro A	91	2847
7.359 Benzyl chloride	94	1014		Decanal	93	1205		3 Dihydroconiferyl alcohol	95	1645			-Tocospiro B	92	2868
7.386 a-Terpinene	92	1020		Coumaran	96	1214) Syringaldehyde	95	1654			-(4-Hydroxy-3-methoxystyryl)-2,6-dimethoxyphenol	93	2914
7.459 Maple lactone	93	1024		5-Hydroxymethylfurfural	96	1220		2 Coniferol	92	1668			-Tocopherol	96	3129
7.556o-Cymene	91	1030		2-Ethyl-3-methylmaleimide	97	1230		9 trans-4-Propenylsyringol	95	1697			-Sitosterol	96	3320

Table 2. Compounds identified in yerba mate with the library match score >90. Compounds highlighted in green have not been previously reported in yerba mate

Aroma Active Compounds Identified in Yerba Mate

Most prominent groups of aroma active compounds were visualized on a heatmap (Figure 3). The most dramatic trends were observed with phenolic compounds, furanones as well as pyrazines. Phenolic compounds were prevalent in brands A and C, while furanones were most abundant in brands A and D. In brand B these compounds were detected at lower levels, however, pyrazines were found to be generally at higher abundance as compared to A and C.

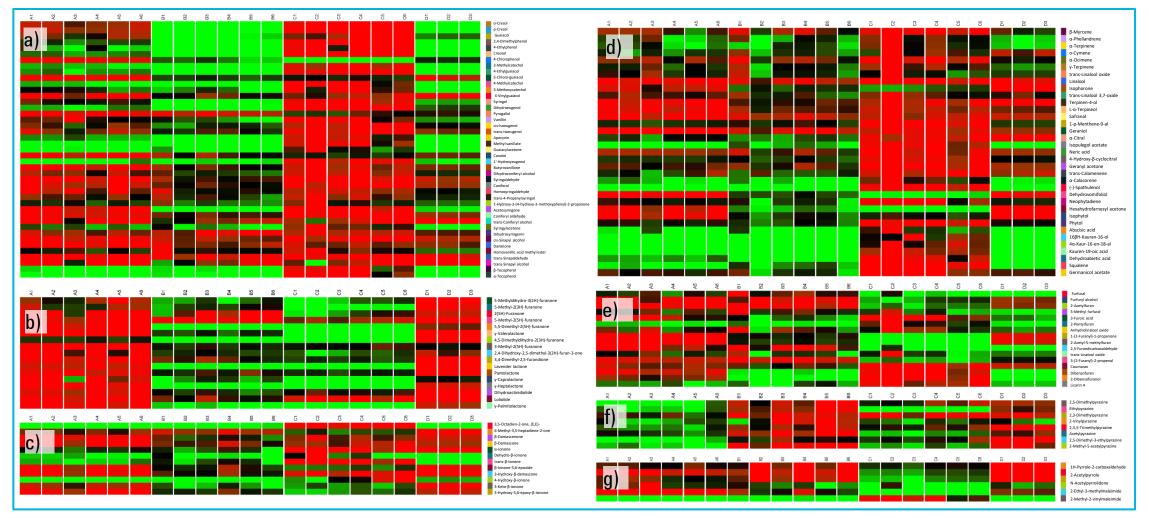


Figure 3. Heatmaps of individual samples from four different brands (A, B, C, and D) of yerba mate grouped by compound class. Selected aroma active compound groups are shown. The raw abundances of compound responses were normalized to an internal standard (triphenyl phosphate). a) methoxyphenols, polyphenols, and other phenolic compounds; b) furanones and benzofuranones; c) enones (including rose ketones) and oxepanes; d) terpenoids; e) furanoic compounds, benzofurans, dibenzofurans and benzofuran flavonoids; f) pyrazines; g) pyrroles

3

Results and Discussion

Many volatile compounds identified in yerba mate have been previously reported in green and black tea (Table 3).

RT	Compound Name	Previously reported in YM	Reported in GREEN	Reported in BLACK
4.428	Furfural	x		Х
4.817	(E)-3-Hexen-1-ol	x	X	X
5.460	(Z)-4-Heptenal	x		X
5.610	2-Acetylfuran	x	х	
5.644	(E,E)-2,4-Hexadienal	x		Х
5.676	2,5-Dimethylpyrazine	x	x	
6.454	5-Methyl furfural		X	
6.511	Benzaldehyde	x	X	x
6.661	Hexanoic acid	X	~ ~	X
6.705	Phenol	x	х	X
6.845	6-Methyl-5-hepten-2-one	x	X	X
6.884	4-Hexenoic acid	x	~ ~	X
6.888	β-Myrcene	x	x	X
7.051	(E,Z)-2,4-Heptadienal	X	x	~
7.144	2,3,5-Trimethylpyrazine	^	x	
7.170	Octanal	x	^	x
		^	v	^
7.175	N-Methylpyrrole-2-carboxaldehyde	~ ~ ~	x	
7.238	1H-Pyrrole-2-carboxaldehyde	X		X
7.294	(E,E)-2,4-Heptadienal	X	X	X
7.556	o-Cymene		X	Х
7.563	2-Ethyl-1-hexanol	X	X	
7.586	3,4-Dimethyl-2,5-furandione			X
7.617	Limonene	x		X
7.639	2-Acetylpyridine		Х	
7.664	Benzyl alcohol	x	Х	Х
7.680	trans-β-Ocimene	x	X	Х
7.730	2,2,6-Trimethylcyclohexanone		X	
8.063	(E)-2-Octenal	x	Х	
8.080	2-Acetylpyrrole	x	х	Х
8.095	y-Terpinene	x		Х
8.221	(E,E)-3,5-Octadien-2-one	x	х	
8.244	1-Octanol	x	X	
8.258	p-Cresol	x	x	
8.293	cis-Linalool oxide	X	x	x
8.545	trans-Linalool oxide (furanoid)	X	x	~ ~
8.605	3,5-Octadien-2-one	X	x	
8.720	Linalool	X	x	x
8.795	Nonanal	x	x	~
	Maltol	x	x	
8.845 8.932	Phenylethyl Alcohol	^	x	
9.165	Neo-Allo-Ocimene		x	
9.430		x	x	
	2,6,6-Trimethyl-2-cyclohexene-1,4-dione			v
9.920	2,4-Dimethylbenzaldehyde	X	X	X
10.033	Terpinen-4-ol	X		X
10.188	Methyl salicylate	X	X	X
10.232	L-α-Terpineol	X	X	X
10.299	Safranal	X	X	X
10.340	Decanal	X		X
10.449	Coumaran			X
10.492	2,4-Nonadienal	x		X
10.606	β-Cyclocitral	x	х	X
10.974	Geraniol	x	х	X
11.236	α-Citral			Х
11.449	Isopulegol acetate			Х
11.495	Salicylic acid			Х
11.613	Indole	x	Х	
11.856	4-Vinylguaiacol	x	х	
12.434	Syringaldehyde			х
12.574	2-Undecenal	x	X	
12.822	β-Damascenone	x		х
13.000	Vanillin	x		X
13.213	β-Damascone	x	X	
13.383	α-lonone	x	X	X
13.667	Geranyl acetone	X	x	X
14.077	Dehydro-β-ionone	~ ~	x	X
14.077	trans-β-lonone	x	x	X
14.118	β-lonone-5,6-epoxide	X	x	^
14.137	Hexanoic acid, anhydride	X	^	x
	Dihydroactinidiolide		v	
14.779		Х	x	X
14.939	α-Calacorene			X
16.485	3-Hydroxy-5,6-epoxy-β-ionone	<u>~</u>	X	Х
18.208	Hexahydrofarnesyl acetone	X	X	
19.377	n-Hexadecanoic acid	X		

Table 3. Compounds identified in yerba mate in this study with the library match score >90 that also have been reported in green and/or black tea

Statistical Analysis and Hierarchical Clustering

Fold Change and statistical analysis (ANOVA) were performed on compounds not included in Figure 3 to select compounds for Hierarchical Clustering. Cluster 1 mostly grouped aldehydes and showed higher levels of these compounds in brand C (Figure 4). Cluster 2 and 5 prevailed by PAHs and steroids, respectively.

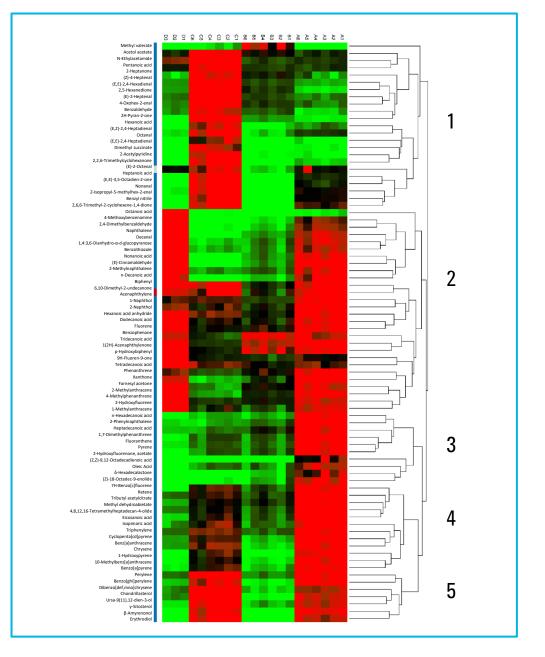


Figure 4. Hierarchical clustering (based on Euclidian distance) on compounds with statistically significant differences (P<0.01) and fold change >2 between the brands of yerba mate

- Profiling of yerba mate extracts of four different brands identified 386 compounds using 7250 GC/Q-TOF
- Heatmap visualization as well as statistical analysis followed by hierarchical clustering identified significant differences between the brands with respect to a variety of compound groups
- The most dramatic trends were observed with phenolic compounds, furanones, pyrazines and PAHs

References

¹ Croge *at al.* Yerba mate: cultivation systems, processing and chemical composition. *Food Sci & Tech.* 2020 Download this poster after ASMS at <u>https://explore.agilent.com/asms</u>

DE44482.5877546296 This information is subject to change without notice.

© Agilent Technologies, Inc. 2021 Published in USA, October 20, 2021

