

Alcohols C_1 - C_3 on an Agilent J&W PoraPLOT Q GC Column

Application Note

Forensic Toxicology

Author

Laura Provoost Agilent Technologies, Inc.

Introduction

The conversion of methanol into ethanol by reaction with hydrogen and carbon monoxide is well known. This reaction is carried out in the presence of a water-soluble cobalt catalyst at elevated temperatures and pressures. Higher alcohols are formed in relatively small amounts as by-products.

 C_1 - C_3 alcohols are polar solvents and are analyzed in a wide variety of samples including blood for alcohol intoxication. This application note shows the separation of these alcohols on an Agilent J&W PoraPLOT Ω column.

Materials and Methods

Technique: GC-FID

Column: Agilent J&W PoraPLOT Q,

 $25 \text{ m} \times 0.32 \text{ mm df} = 10 \mu\text{m} (p/n CP7551)$

Sample: Compounds in headspace

Injection Volume: 1 μL

Carrier Gas: Hydrogen, constant pressure, 100 kPa

(1 bar, 14.5 psi)

Temperature: 200 °C

Injection: 275 °C, split 1:100

Detection: FID, 275 °C

Results and Discussion

The analysis of the $\rm C_1$ - $\rm C_3$ alcohols took less than 2 minutes with the PoraPLOT Q column. The compounds were baseline separated and had an excellent peak shape (Figure 1).

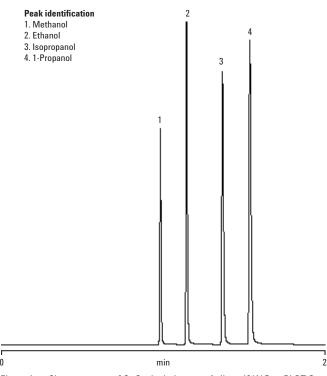


Figure 1. Chromatogram of C_i - C_s alcohols on an Agilent J&W PoraPLOT Q column.

Conclusion

Using a PoraPLOT Ω GC column, separation of C_1 - C_3 alcohols was achieved in less than 2 minutes. PoraPLOT Ω is recommended for column switching systems that analyze polar and apolar volatile compounds. The column delivers repeatable retention times because retention is not influenced by water in the sample.

Reference

http://www.freepatentsonline.com/4424383.pdf

www.agilent.com/chem

For Forensic Use.

This information is subject to change without notice.

© Agilent Technologies, Inc. 2012

Published in USA, September 17, 2012

SI-02484

