


# Multi-residue Analysis of PAHs, PCBs and OCPs using an Agilent J&W FactorFour VF-35ms Column

## **Application Note**

#### Author

Laura Provoost Agilent Technologies, Inc.

### Introduction

Multi-residue analysis involves the separation of different groups of compounds in a single operation. One of the most important advantages of multi-residue analysis is the opportunity to screen and quantify a multitude of components in a short time span, reducing analysis costs. A multi-residue method for the separation of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) is described here.

PAHs, PCBs and OCPs have different sources and belong to different chemical classes. PAHs contain two or more aromatic rings and are formed during incomplete combustion or pyrolysis of organic matter. OCPs are pesticides containing mainly carbon, hydrogen and chlorine atoms. They break down slowly and can remain in the environment long after application, and bioaccumulate in organisms during prolonged exposure. PCBs are characterized by two phenyl groups, with varying numbers of chlorine atoms. PCBs are used in many industrial and commercial applications, for example, as plasticizers in paints, plastics and rubber products, and in pigments and dyes. All of these compounds are typically very persistent in sediments, plants and animals.

The 16 EPA PAHs,17 PCBs (including the 6 EU marker PCBs) and 24 common OCPs were analyzed in a single run at different concentration levels. The concentration of the PAHs was ten times higher than the concentration of PCBs and OCPs, a concentration difference that is common also in real environmental samples.



| Conditions        |                                                                                                   |
|-------------------|---------------------------------------------------------------------------------------------------|
| Technique:        | GC/MS                                                                                             |
| Column:           | VF-35ms, 30 m x 0.25 mm, df=0.25 µm (part number<br>CP8877)                                       |
| Sample Conc:      | OCPs and PCBs 0.1 µg/mL, PAHs 1 µg/mL                                                             |
| Temperature:      | 75 °C (1 min), 20 °C/min, 220 °C, 5 °C/min, 260 °C (2<br>min), 7 °C/min, 305 °C, 2 °C/min, 330 °C |
| Injection Volume: | 1.0 µL                                                                                            |
| Carrier Gas:      | Helium, constant flow, 1.0 mL/min                                                                 |
| Injection:        | 100 °C (0.4 min), 600 °C/min, 300 °C (15 min), 50 °C/min, 120 °C, splitless                       |
| Detection:        | Quadrupole MS, El in SIM, Source 230 °C, Transfer line<br>280 °C                                  |

### **Results and Discussion**

The VF-35ms column delivered a multi-residue analysis of 57 PAHs, PCBs and OCPs in 32.5 minutes (Figure 1). For PAHs, two pairs are difficult to resolve, namely benzo[b] fluoranthene/benzo[k]fluoranthene and indeno[1,2,3-c,d] pyrene/dibenz[a,h]anthracene. The first pair has the same mass and therefore cannot be separated by MS alone. The second pair have different masses (276 and 278 respectively) and again are difficult to resolve using only MS.

For PCB and OCP groups, PCB 138/PCB 163 and p,p'-DDD/o,p'-DDT have the same mass spectra and cannot be separated by MS. The OCP group also has another pair difficult to resolve, namely cis-heptachlor epoxide and trans-heptachlor epoxide. These compounds both have the main m/z 353 in their mass spectra. Confirmation of both compounds therefore requires an additional m/z.

Figures 2 to 6 show the peak pairs that are difficult to resolve.

#### Table 1. Peak Identification and SIM ions

| Peak | Compound          | lons     |
|------|-------------------|----------|
| 1    | Naphthalene       | 128      |
| 2    | Acenaphthylene    | 152      |
| 3    | Acenaphthene      | 154      |
| 4    | Fluorene          | 166      |
| 5    | Hexachlorobenzene | 284, 249 |
| 6    | a-HCH             | 181, 219 |
| 7    | PCB 18            | 256, 186 |
| 8    | ү-НСН             | 181, 219 |
| 9    | β-НСН             | 181, 219 |
| 10   | Phenanthrene      | 178      |
| 11   | Anthracene        | 178      |
| 12   | PCB 28            | 256, 186 |
| 13   | PCB 31            | 256, 186 |
| 14   | Heptachlor        | 272, 100 |
| 15   | δ-НСН             | 181, 219 |

| Peak | Compound                 | lons     |
|------|--------------------------|----------|
| 16   | PCB 20                   | 256, 186 |
| 17   | PCB 52                   | 292, 220 |
| 18   | Aldrin                   | 66, 263  |
| 19   | PCB 44                   | 292, 220 |
| 20   | trans-Heptachlor epoxide | 353, 81  |
| 21   | cis-Heptachlor epoxide   | 81, 183  |
| 22   | PCB 155                  | 360, 290 |
| 23   | trans-Chlordane          | 373, 326 |
| 24   | PCB 101                  | 326, 254 |
| 25   | o,p'-DDE                 | 246, 318 |
| 26   | cis-Chlordane            | 373, 237 |
| 27   | Fluoranthene             | 202      |
| 28   | Endosulfan I             | 195, 241 |
| 29   | p,p'-DDE                 | 246, 318 |
| 30   | Dieldrin                 | 79, 263  |
| 31   | Pyrene                   | 202      |
| 32   | o,p'-DDD                 | 235, 165 |
| 33   | PCB 118                  | 326, 254 |
| 34   | PCB 149                  | 360, 290 |
| 35   | Endrin                   | 263, 81  |
| 36   | PCB 153                  | 360, 290 |
| 37   | o,p'-DDT                 | 235, 165 |
| 38   | p,p'-DDD                 | 235, 165 |
| 39   | Endosulfan II            | 241, 195 |
| 40   | PCB 105                  | 326, 254 |
| 41   | PCB 163                  | 360, 290 |
| 42   | PCB 138                  | 360, 290 |
| 43   | p,p'-DDT                 | 235, 165 |
| 44   | Endrin-aldehyde          | 345, 67  |
| 45   | Endosulfan sulfate       | 272, 387 |
| 46   | PCB 180                  | 396, 324 |
| 47   | Methoxychlor             | 227      |
| 48   | Benz[a]anthracene        | 228      |
| 49   | Chrysene                 | 228      |
| 50   | PCB 170                  | 396, 324 |
| 51   | PCB 194                  | 430, 358 |
| 52   | Benzo[b]fluoranthene     | 252      |
| 53   | Benzo[k]fluoranthene     | 252      |
| 54   | Benzo[a]pyrene           | 252      |
| 55   | Indeno[1,2,3-c,d]pyrene  | 276      |
| 56   | Dibenz[a,h]anthracene    | 278      |
| 57   | Benzo[g,h,i]perylene     | 276      |

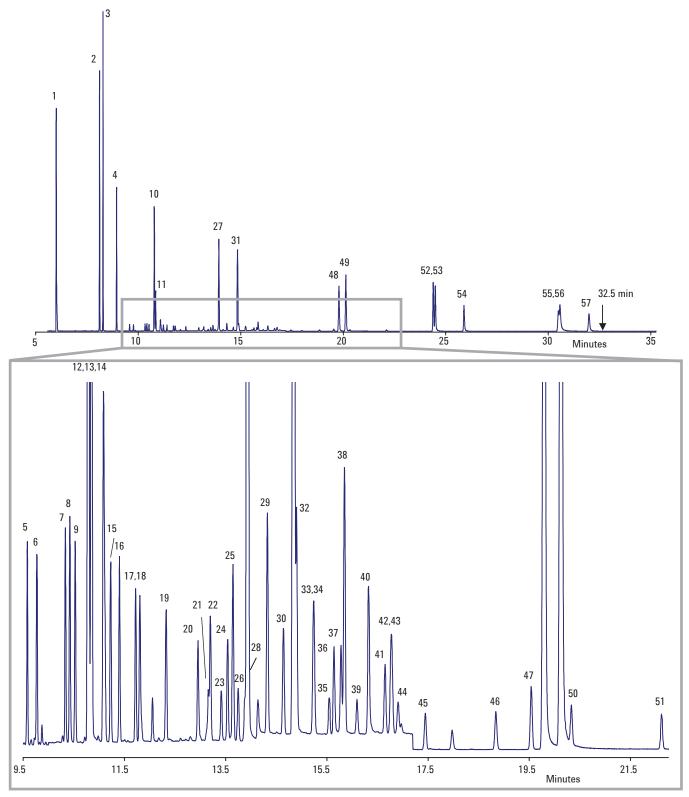



Figure 1. Total ion chromatogram multi-residue analysis on a VF-35ms column.

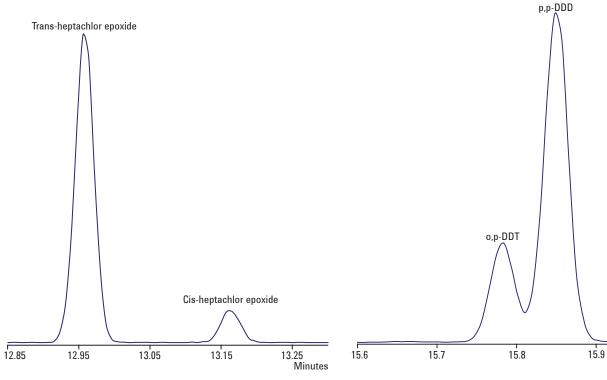
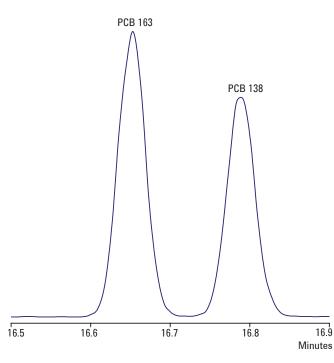




Figure 2. Zoomed total ion chromatogram of cis-heptachlor epoxide / trans-heptachlor epoxide



16.0

Minutes





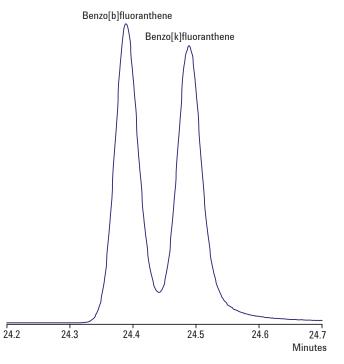



Figure 4. Zoomed total ion chromatogram of benzo[b]fluoranthene / benzo[k]fluoranthene

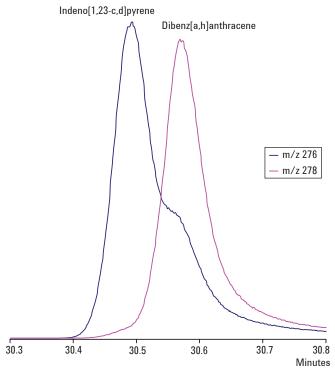



Figure 6. Selected ion chromatogram (m/z 276 and 278) of indeno[1,2,3-c,d]pyrene and dibenz[a,h]anthracene

### Conclusion

Analyzing all of these compounds in a single run is normally problematic because every group presents its own difficulties in separation. However, with the VF-35ms column and optimized oven program, multi-residue separation is achieved in about 32 minutes. The VF-35ms column is based on a medium polarity, highly robust and inert phase, making it the ideal choice for demanding trace environmental and chemical analysis.

### References

Anon (2005) Report Joint FAO/Who Expert Committee on Food Additives, Sixty-fourth meeting, 8-17 February 2005. Rome, Italy.

http://www.epa.gov/epawaste/hazard/tsd/pcbs/pubs/ about.htm

http://www.uic.edu/sph/glakes/pcb/whatarepcbs.htm

http://www.akaction.org/fact\_sheets/Organochlorine\_ Pesticide\_Fact\_Sheet.pdf

#### www.agilent.com/chem

This information is subject to change without notice. © Agilent Technologies, Inc. 2010 Published in UK, October 11, 2010 SI-02396

