# A Highly Sensitive and Specific GC-PCI-MS/MS Method for the Analysis of Fluorinated Alkyl Compounds

Anthony Macherone<sup>1</sup>; Shoji F Nakayama<sup>2</sup>; Kidus Tadele<sup>2</sup>; Marc A Mills<sup>2</sup> <sup>1</sup>Agilent Technologies, Wilmington, DE; <sup>2</sup>U.S. Environmental Protection Agency, Cincinnati, OH

## Introduction

Increasing numbers of researchers have shown that fluorotelomer alcohols can degrade to fluorinated carboxylic acids under certain environmental conditions. Fluorotelomer alcohols are manufactured and used as building blocks for fluorinated polymers and may potentially be intermediate degradation products from those polymers. Robust analytical methodology is required to study the fate and transport of fluorotelomers in the environment, investigate degradability of fluoropolymers, and gain understanding of human exposure and toxicity. Herein, we present a GC-PCI-MS/MS method for trace level analysis of fluorinated alkyl compounds in complex matrices such as biosolids. The method employs cold, splitless injection and capillary flow technology to enable backflush of matrix and unwanted interferences and maintain retention time precision.

### Background

Fluorinated alkyl compounds (PFCs) studied for fate, transport, potential human exposure and toxicities

Fluorotelomer alcohols (FTOHs) degrade to PFCs both atmospherically and biologically

Some of the PFCs have been found to be toxic and widespread throughout the world

The source of the PFCs remains yet unknown

Speculated

Wastewater treatment plants **Direct emission from manufacturers** Degradation of precursor materials

### **Purpose of Study**

Develop robust, sensitive and selective GC-MS/MS method in bio-solid matrix from waste water treatment plants

Study the fate and transport of fluorotelomers in the environment

Investigate degradation pathways of fluoropolymers

Gain understanding of human exposure and toxicity

Evaluate gas chromatography-guadrupole time of flight mass spectrometry (GC Q-TOF MS)

### **Experimental**

### GC-PCI-MS/MS Conditions

| GC Run Conditions         |                                             |
|---------------------------|---------------------------------------------|
| Column 1                  | HP-INNOWax (Agilent Santa Clara, CA)        |
| Column 2                  | 0.7 m x 0.15 mm fused silica                |
| Injection mode            | pulsed, cold splitless                      |
| Inlet temperature program | 65 °C (0.01 min), 300 °C/min to 250 °C      |
| Cryo                      | Compressed air                              |
| Injection volume          | 2 microliters                               |
| Carrier gas               | Helium, constant flow mode, 1.0 ml/min      |
| Oven program              | 45 °C (0 min hold), 60 °C/min to 60 °C (1   |
|                           | min), 3 °C/min to 75 °C (0 min), 20 °C/min  |
|                           | to 210 °C (0 min)                           |
| Transfer line temperature | 210 °C                                      |
|                           |                                             |
| GC Post-Run Conditions    |                                             |
| Backflush device          | Purged Ultimate Union (Agilent Santa Clara, |
|                           | CA) controlled by electronic pressure       |
|                           | control module at 1 psi, constant presssure |
| Backflush conditions      | Column 1: -10.866 ml/min; Column 2: 60      |
|                           | psi, 4 minutes                              |
|                           |                                             |
| MS conditions             |                                             |
| Tune                      | Autotune                                    |
| Gain factor               | 100                                         |
| Acquisition parameters    | Positive Chemical Ionization, multiple      |
|                           | reaction monitoring                         |
| Collision gas             | Nitrogen, 1.5 ml/min; Helium quench gas     |
|                           | 2.25 ml/min                                 |
| Solvent delay             | 3.2 minutes                                 |
| MS temperatures           | Source 250 °C, Quadrupoles 150 °C           |

#### MRM Table

| Compounds | Quantifying MRM | <b>CE</b> ( <b>V</b> ) | Qualifying MRM | CE (V) |
|-----------|-----------------|------------------------|----------------|--------|
| 10:1 FTOH | 551 -> 49       | 40                     | 527 -> 481     | 27     |
| 10:2 FTOH | 565 -> 527      | 10                     | 551 -> 531     | 3      |
| 11:1 FTOH | 601 -> 581      | 3                      | 601 -> 49      | 40     |
| 4:2 FTOH  | 265 -> 227      | 5                      | 227 -> 181     | 15     |
| 5:1 FTOH  | 301 -> 281      | 3                      | 301 -> 49      | 40     |
| 6:1 FTOH  | 351 -> 331      | 3                      | 351 -> 49      | 40     |
| 6:2 FTOH  | 365 -> 327      | 5                      | 327 -> 281     | 17     |
| 7:1 FTOH  | 401 -> 381      | 3                      | 401 -> 49      | 40     |
| 7:2 FTOH  | 377 -> 77       | 10                     | 377 -> 69      | 25     |
| 8:1 FTOH  | 451 -> 49       | 40                     | 427 -> 381     | 23     |
| 8:2 FTOH  | 465 -> 427      | 5                      | 451 -> 431     | 3      |
| 9:1 FTOH  | 501 -> 481      | 3                      | 501 -> 49      | 40     |
| EtFOSE    | 572 -> 554      | 5                      | 554 -> 71      | 20     |
| MeFOSE    | 540 -> 57       | 20                     | 558 -> 540     | 5      |

### **Experimental**

### **Standards and Samples**

- •Solvent standards, 100 ng/µl in MTBE
- •Two bio-solid extracts prepared in EtOAc
- •One 1% and the other 5% lime treated
- •Each extract split 50/50

•One spiked with analytes and IS @ 50 ng/ml, the other not spiked

| ID                                                     | Solvent       | Vol (mL)                                    | Description                                   |  |  |
|--------------------------------------------------------|---------------|---------------------------------------------|-----------------------------------------------|--|--|
| 1                                                      | Ethyl acetate | 1                                           | 1 Extracted solvent, 1% lime treated biosolid |  |  |
| 2                                                      | Ethyl acetate | 2 1 Standards in extracted solvent          |                                               |  |  |
| 3 Ethyl acetate 1 Extracted solvent, 5% lime treated b |               | Extracted solvent, 5% lime treated biosolid |                                               |  |  |
| 4                                                      | Ethyl acetate | 1                                           | Standards in extracted solvent                |  |  |

Biosolid samples were extracted 3 times with methyl tert-butyl ether via 30-min sonication followed by 30-min shaking. All extracts were centrifuged for 10 min at 3000 rpm then combined. The extracts were then treated by solid phase extraction for further clean up. Prior to analysis, sample extracts were frozen at  $-80^{\circ}$ C for 30 min to remove water.

#### **MRMs**







# **Results & Discussion**

#### Area Precision at 50 pg on column

| Sample                   | Injection | 4:2 FTOH | 5:1 FTOH | 6:2 FTOH  | 6:1 FTOH  | 7:2 FTOH  | 7:1 FTOH |        |
|--------------------------|-----------|----------|----------|-----------|-----------|-----------|----------|--------|
| Data File                | Number    | Area     | Area     | Area      | Area      | Area      | Area     |        |
| 1% lime treated - vial 1 | 1         | 770372   | 780203   | 191544    | 484227    | 202027    | 462117   |        |
| 1% lime treated - vial 1 | 2         | 791988   | 794505   | 196308    | 494719    | 201631    | 474574   |        |
| 1% lime treated - vial 1 | 3         | 797961   | 807048   | 195345    | 485956    | 201126    | 472518   |        |
| 1% lime treated - vial 2 | 1         | 815268   | 823303   | 203368    | 511424    | 214294    | 510761   |        |
| 1% lime treated - vial 2 | 2         | 819729   | 832375   | 206549    | 468437    | 212621    | 502528   |        |
| 1% lime treated - vial 2 | 3         | 838986   | 843641   | 208300    | 519692    | 214490    | 503993   |        |
|                          | % RSD     | 2.99     | 2.95     | 3.38      | 3.82      | 3.24      | 4.18     |        |
|                          |           |          |          |           |           |           |          |        |
| Sample                   | 8:2 FTOH  | 8:1 FTOH | 9:1 FTOH | 10:2 FTOH | 10:1 FTOH | 11:1 FTOH | MeFOSE   | EtFOSE |
| Data File                | Area      | Area     | Area     | Area      | Area      | Area      | Area     | Area   |
| 1% lime treated - vial 1 | 194986    | 360154   | 233693   | 66002     | 172257    | 72622     | 52349    | 37306  |
| 1% lime treated - vial 1 | 198713    | 365775   | 240025   | 66967     | 176801    | 74053     | 51874    | 36519  |
| 1% lime treated - vial 1 | 201814    | 370929   | 245253   | 67636     | 178756    | 75262     | 52659    | 37042  |
| 1% lime treated - vial 2 | 208950    | 388089   | 263460   | 69781     | 188766    | 80666     | 55799    | 38751  |
| 1% lime treated - vial 2 | 206685    | 397540   | 263452   | 68031     | 189377    | 80261     | 55807    | 38946  |
| 1% lime treated - vial 2 | 208881    | 387945   | 264234   | 70021     | 189277    | 80669     | 55718    | 38665  |
|                          | 2.84      | 3.92     | 5.44     | 2.32      | 4.13      | 4.77      | 3.56     | 2.74   |
| Sample                   | Injection | 4:2 FTOH | 5:1 FTOH | 6:2 FTOH  | 6:1 FTOH  | 7:2 FTOH  | 7:1 FTOH |        |
|                          | Number    | Area     | Area     | Area      | Area      | Area      | Area     |        |
| 5% lime treated - vial 1 | 1         | 822104   | 835995   | 201828    | 521148    | 215060    | 515108   |        |
| 5% lime treated - vial 1 | 2         | 808261   | 822110   | 192428    | 502187    | 206797    | 495274   |        |
| 5% lime treated - vial 1 | 3         | 779078   | 781190   | 184528    | 477415    | 197952    | 480935   |        |
| 5% lime treated - vial 2 | 1         | 747749   | 767019   | 182643    | 474199    | 190738    | 465050   |        |
| 5% lime treated - vial 2 | 2         | 747430   | 725434   | 179494    | 463952    | 188150    | 455082   |        |
| 5% lime treated - vial 2 | 3         | 725129   | 712423   | 171405    | 427678    | 179695    | 430268   |        |
|                          | % RSD     | 4.94     | 6.44     | 5.70      | 6.74      | 6.59      | 6.36     |        |
|                          |           |          |          |           |           |           |          |        |
| Sample                   | 8:2 FTOH  | 8:1 FTOH | 9:1 FTOH | 10:2 FTOH | 10:1 FTOH | 11:1 FTOH | MeFOSE   | EtFOSE |
|                          | Area      | Area     | Area     | Area      | Area      | Area      | Area     | Area   |
| 5% lime treated - vial 1 | 181813    | 399943   | 263344   | 68021     | 193088    | 80541     | 54726    | 38407  |
| 5% lime treated - vial 1 | 176363    | 382338   | 253529   | 65531     | 186323    | 79300     | 52196    | 36218  |
| 5% lime treated - vial 1 | 174462    | 381721   | 244776   | 63520     | 180684    | 75925     | 50769    | 36051  |
| 5% lime treated - vial 2 | 171177    | 366063   | 236982   | 62233     | 171562    | 72234     | 51615    | 36603  |
| 5% lime treated - vial 2 | 166233    | 357142   | 231167   | 61478     | 169218    | 71473     | 50869    | 36111  |
| 5% lime treated - vial 2 | 159522    | 339585   | 216155   | 58584     | 160184    | 67267     | 48787    | 33616  |
|                          |           |          |          |           |           |           | -        | -      |

To assure sample integrity and mitigate potential thermal degradation, a pulsed, cold splitless injection was used. This allowed increasing the injection volume from one to two microliters and nearly doubling signal intensity with a minimal increase in baseline noise. MRM transitions were determined for the compounds through a series of full scan and product ion scan experiments. Collision energies were optimized to facilitate the maximum response for each transition. Significant peak shifting was observed in matrix spikes on the wax column during method development. To address this issue, post-column backflush was configured using a purged union at the outlet of the analytical column and a 0.7 m restrictor into the mass spectrometer. Without backflush, retention times wandered as much as 0.2 minutes from injection to injection. After installing the backflush components, retention time reproducibility ranged from 2.3% - 6.9% RSD in the matrix spikes. Detection limits, as determined by a S/N ratio of  $\geq$  10:1, ranged from 2 fg – 100 fg on column.





# GC Q-TOF

### GC Quadrupole Time of Flight MS (GC Q-TOF)

As a follow up study that presented herein, the authors investigated GC Q-TOF as an alternative analytical approach with the same samples. The following represents preliminary data from the GC-PCI Q-TOF methodology.

### Uncorrected Mass Accuracy at 50 pg on column

| Acronym   | Formula 🛛 🔽                                                       | Exact Mass + H 🔽 | Observed Mass 🔽 | ∆ppm 🔽  |
|-----------|-------------------------------------------------------------------|------------------|-----------------|---------|
| 4:2 FTOH  | C <sub>6</sub> H <sub>5</sub> F <sub>9</sub> O                    | 265.0269         | 265.0270        | -0.3773 |
| 6:2 FTOH  | C <sub>8</sub> H <sub>5</sub> F <sub>13</sub> O                   | 365.0206         | 365.0206        | 0.0000  |
| 8:2 FTOH  | C <sub>10</sub> H <sub>5</sub> F <sub>17</sub> O                  | 465.0142         | 465.0140        | 0.4301  |
| 10:2 FTOH | $C_{12}H_{5}F_{21}O$                                              | 565.0078         | 565.0078        | 0.0000  |
| 7:2 sFTOH | $C_9H_5F_{15}O$                                                   | 415.0174         | 415.0190        | -3.8553 |
| 5:1 FTOH  | $C_6H_3F_{11}O$                                                   | 301.0081         | 301.0079        | 0.6644  |
| 6:1 FTOH  | C7 H3 F13 O                                                       | 351.0049         | 351.0050        | -0.2849 |
| 7:1 FTOH  | C8 H3 F15 O                                                       | 401.0017         | 401.0016        | 0.2494  |
| 8:1 FTOH  | C9 H3 F17 O                                                       | 450.9985         | 450.9985        | 0.0000  |
| 9:1 FTOH  | C10 H3 F19 O                                                      | 500.9953         | 500.9956        | -0.5988 |
| 10:1 FTOH | C11 H3 F21 O                                                      | 550.9921         | 550.9922        | -0.1815 |
| 11:1 FTOH | C12 H3 F23 O                                                      | 600.9889         | 600.9896        | -1.1647 |
| MeFOSE    | C11 H8 F17 N O3 S                                                 | 558.0026         | 558.0042        | -2.8674 |
| EtFOSE    | C <sub>12</sub> H <sub>10</sub> F <sub>17</sub> NO <sub>3</sub> S | 572.0183         | 572.0167        | 2.7971  |

### Resolution (50 pg on column)



### Extracted lons vs. Matrix (50 pg on column)



### Conclusions

There are few references in the literature pertaining to the analysis of fluorotelomer alcohols. One reference posits complications for GC-MS due to thermal degradation of analytes in the traditionally hot inlet. Herein is presented a sensitive and selective method for the analysis of 12 fluorotelomer alcohols and 2 perfluorinated sulfonamidoethanols using GC-PCI-MS/MS equipped with cold, splitless injection and column backflushing. This method is suitable for trace level analysis of volatile fluorochemicals in complex bio-solid matrices.

Follow up studies Illustrate GC Q-TOF MS as viable for the analysis of PFCs in bio-solid matrix with excellent uncorrected mass accuracy: typically < 2 ppm. Resolving power easily extracted all analytes and labeled IS from heavy bio-solid matrix at the 50 ng/ml calibrator level and below. Comparison to MRM data suggests high fg on column detection limits. Further studies are to be undertaken to determine and validate MDLs via GC Q-TOF.

# Acknowledgements

The authors would like to gratefully acknowledge the United States Environmental Protection Agency for providing standards and prepared samples for the study presented herein.

The United States Environmental Protection Agency through its Office of Research and Development contributed to the research described here.

Mention of trade names or commercial products does not constitute endorsement or recommendation for use by USEPA.

# Bibliography

Nakayama SF, Macherone A, Kidus Tadele K and Mills MA. Application of GC-MS/MS for volatile fluoroalkyl compound analysis. Dioxin 2010. September 12-17, 2010 Marriot Rivercenter San Antonio, TX

Larsen BS, Stchur P, Szostek B, Bachmura SF, Rowand RC, Prickett KB, Korzeniowski SH, and Buck RC. Journal of chromatography. A 1110(1-2):117,2006 Mar 31

