USP 467 ANALYSIS OF RESIDUAL SOLVENTS

Technology Advantage: Agilent Intuvo 9000 GC with HS

Introduction

Analysis of residual solvent is a critical application in the pharmaceutical industry. The choice of solvent during manufacturing can improve yield or typically affect the chemical properties of the product synthesized. However, solvents do not enhance the product's efficacy, and must be removed as completely as possible to meet product specifications and good manufacturing practices¹. Therefore, testing for residual solvents during production or purification processes is a necessary aspect of manufacturing.

Analysis of residual solvents according to USP 467 was evaluated on an Agilent Intuvo system equipped with a headspace sampler. The Agilent Intuvo 9000 Gas Chromatograph yields advantages over conventional GC systems:

- · Modular flow path for simplified sample splitting to two columns
- Quick column changes for easier method development
- Smaller footprint

For more information, visit: www.agilent.com

Experimental

An Intuvo 9000 GC was equipped with an Agilent 7697A Headspace Sampler. Class 1, Class 2a, and Class 2b standard solutions were prepared and evaluated according to USP 467 methodology.

Parameter	Value	
Agilent Intuvo 9000 GC		
Inlet	140 °C Split 5:1	
Column	Agilent J&W DB-Select 624 Ultra Inert Intuvo, 30 m × 0.32 mm, 1.8 µm (p/n 123-0334UI-INT)	
Column flow	2 mL/min	
Oven	40 °C (5 minutes) then 15 °C/min to 180 °C (3 minutes)	
Jumper chip	250 °C	
FID	250 °C	
Agilent 7697A Headspace Sampler		
Oven	85 °C	
Loop	85 °C	
Transfer line	100 °C	
Vial equilibration	40 minutes	
Injection duration	0.5 minutes	
Vial	10 mL	
Shaking	On, level 2	
Vial fill flow	50 mL/min	
Vial fill pressure	15 psi	
Vial pressure equilibration time	0.05 minutes	
Loop fill ramp rate	20 psi/min	
Final loop pressure	10 psi	
Loop equilibration	0.05 minutes	

Results and Discussion

Eight headspace vials were prepared for each solvent standard (Classes 1, 2a, and 2b), and repeatability was evaluated. Repeatability was very good, with all but one compound yielding RSDs of less than 5 % (Tables 1–3). While USP 467 does not have specific RSD requirements, 5 % RSD is an acceptable level for most laboratories.

Figures 1–3 show chromatograms for the three solvent classes. Tables 1–3 also list the corresponding analyte number.

Figure 3. Class 2b standard chromatogram.

Table 1. Class 1 solvent standard repeatability.

Class 1	RSD %
1,1-Dichloroethane (1-1)	2.7
1,1,1-Trichloroethane (1-2)	2.1
Carbon tetrachloride (1-3)	4.5
Benzene (1-4)	1.9
1,2-Dichlorobenzene (1-5)	0.93
1,1-Dichloroethane (1-6)	2.7

Table 2. Class 2a solvent standard repeatability.

Class 2a	RSD %
Methanol	1.3
Acetonitrile	0.98
Dichloromethane	1.3
trans-1,2-Dichloroethene	2.4
cis-1,2-Dichloroethene	1.7
Tetrahydrofuran	0.69
Cyclohexane	2.5
Methylcyclohexane	2.7
1,4-Dioxane	1.1
Toluene	2.1
Chlorobenzene	1.8
Ethylbenzene	2.3
<i>m,p-</i> Xylene	2.3
o-Xylene	2.1

Table 3. Class 2b solvent standard repeatability.

Class 2b	RSD%
Hexane	4.6
Nitromethane	6.7
Chloroform	4.2
1,2-Dimethoxyethane	3.7
Trichloroethylene	4.6
Pyridine	2.8
2-Hexanone	2.9
Tetralin	3.6

The three standard solutions were then mixed to evaluate the three classes in a single run. Figure 4 shows the resulting chromatogram. The differences in concentration and coelutions of multiple compounds demonstrate the need to run these as separate mixes, or use additional analytical techniques.

Figure 4. USP 467 Class 1, 2a, and 2b in a single headspace vial.

Conclusion

The Agilent Intuvo 9000 GC equipped with the Agilent 7697A Headspace Sampler delivers excellent repeatability performance for USP 467 class 1, 2a, and 2b solvent standards*. However, when attempting to analyze the three mixes together, difficulties arise due to differences in concentration and coeluting analytes. Additional analytical techniques such as splitting to two columns for dual detector analysis or using a mass spectrometer as a detector would improve detection and identification of the analytes in a single mix, and will be discussed in a separate Application Brief.

* For a majority of the analytes evaluated, RSD was less than 3 %.

Reference

1. www.usp.org/sites/default/files/usp-pdf/EN/USPNF/generalChapter467Current.pdf

www.agilent.com Information, descriptions and specifications in this publication are subject to change without notice.

> © Agilent Technologies, Inc. 2017 Published in USA, July 13, 2017 5991-8032EN

Agilent Technologies