

# Multiresidue Analysis of Pesticides in Olive Samples Using GC/MS/MS

# **Application Note**

Food Testing and Agriculture

# Abstract

This application note describes an analytical method for the determination of 27 pesticide residues in olives. Olives have a high lipid content of about 80 to 85%, which can adversely affect pesticide recoveries and chromatographic systems. Therefore, a modified QuEChERS method for the extraction and analysis by gas chromatography/triple quadrupole (GC/MS/MS) multiple reaction monitoring method was employed. The method was validated for olives in terms of recovery, repeatability, and reproducibility. The results demonstrated that the method achieved acceptable quantitative recoveries of 70 to 120%, as recommended in SANCO/12571 [1], with RSDs < 20%. Limits of quantification at or below the regulatory maximum residue limits for the pesticides were achieved.

# Introduction

Pesticide residue analysis is essential for the health of humans and animals, the import/export trade, and regulated control purposes. Many pesticide classes are used in agriculture, and most pesticides have regulatory guidelines, for example maximum residue levels (MRLs) in food, with analytical determination based on GC/MS or LC/MS/MS [2].

Methods using gas chromatography coupled to mass spectrometry (GC/MS) are based on selected ion monitoring (SIM), which is fairly sensitive, but identification potential and non-target/retrospective analysis capabilities are sacrificed. Determination of GC-amenable pesticides in food samples by using GC/MS/MS has emerged in the last decade as a valuable approach, which allows higher selectivity and sensitivity, while minimizing or even eliminating most chromatographic



# Authors

A. Moreno López, L. Moreno López, and J.L. Pineda Lucas Laboratorio Químico Microbiológico S.A. Sevilla, Spain Joan Stevens

Agilent Technologies, Inc.

interferences [3]. Despite the increased sensitivity and selectivity of GC/MS/MS co-extract matrix components can cause matrix effects that can negatively impact results. An optimized sample preparation method can minimize these effects.

# **Materials and Methods**

A modified EN extraction method was used for the extraction of 27 pesticides from olives. The solvent-modified method, which incorporated a mixture of nonpolar and polar aprotic solvents (ethyl acetate:cyclohexane:acetone) versus the polar aprotic solvent (acetonitrile) described in EN 15662 [4] was used to extract the pesticides from the high-lipid matrix associated with olives. A mixture of nonpolar and polar aprotic solvents can offer a wider polarity range for extractable compounds relative to the use of only a polar aprotic solvent, ACN. The pesticides included organochlorine, organophosphate, and pyrethroid classes.

#### **Consumables and instruments**

- Agilent Bond Elut QuEChERS EN Extraction Kit (p/n 5982-5650)
- Agilent Bond Elut QuEChERS Dispersive Kit, EN Method, 15 mL (p/n 5982-5156)
- Agilent SPE Bulk Sorbent, C18 Endcapped (p/n 5982-8082)
- Agilent J&W HP-5ms Ultra Inert GC column, 30 m × 0.25 mm (p/n 19091S-433UI)
- Agilent 7890A GC
- Agilent 7000A Triple Quadrupole GC/MS System
- Agilent 7693 ALS Injector

#### Solvents and pesticide standards

- · Ethyl acetate, residue analysis purity, Baker
- · Cyclohexane, residue analysis purity, Sharlau
- · Acetone, residue analysis purity, Baker
- Solvent mixture: ethyl acetate:cyclohexane:acetone (1:1:4)
- · Pesticide standards, Dr. Ehrenstorfer

#### **GC** conditions

| Carrier:               | Constant pressure, 22.0 psi                                                                                       |
|------------------------|-------------------------------------------------------------------------------------------------------------------|
| Oven temperature:      | Initial 70 °C (2 min), 25 °C/min to 150 °C (0 min),<br>3 °C/min to 200 °C (0 min), 8 °C/min to 280 °C<br>(10 min) |
| njector temperature:   | 250 °C                                                                                                            |
| Septum purge:          | On, 3 mL/min                                                                                                      |
| Purge flow split vent: | 100 mL/min at 0.75 minutes                                                                                        |
| njection:              | Splitless, 1.0 µL                                                                                                 |
| RTL compound:          | Chlorpyrifos methyl                                                                                               |
|                        |                                                                                                                   |

### **MS** conditions

| lon source:                | EPC                                                                  |
|----------------------------|----------------------------------------------------------------------|
| Source temperature:        | 280 °C                                                               |
| Collision gas:             | He quench gas on, 2.35 mL/min $\rm N_2$ collision gas on, 1.5 mL/min |
| Transfer line temperature: | 280 °C                                                               |
| MS quad 1,2 temperature:   | 150 °C both                                                          |
| MS1/MS2 resolution:        | Wide/wide                                                            |
| MRM settings:              | See Table 1                                                          |

# Table 1. Retention time and MRM parameters for 27 pesticides.

| Pesticide                           | RT (locked to<br>chlorpyrifos methyl) |
|-------------------------------------|---------------------------------------|
| Chlorpropham                        | 11.05                                 |
| Heptenophos                         | 9.737                                 |
| Pirimiphos methyl                   | 18.307                                |
| Hexachlorobenzene                   | 12.377                                |
| Fonofos                             | 13.889                                |
| Simazine                            | 12.909                                |
| Terbufos                            | 13.796                                |
| Terbuthylazine                      | 13.810                                |
| Diazinon                            | 14.466                                |
| Pirimicarb                          | 15.677                                |
| Chlorpyrifos methyl                 | 16.59                                 |
| Chloropropylate                     | 25.419                                |
| Parathion-methyl                    | 16.594                                |
| Bifenthrin                          | 28.839                                |
| Fenitrothion                        | 18.072                                |
| Parathion                           | 19.275                                |
| Chlorthal dimethyl                  | 19.433                                |
| Chlorfenvinphos                     | 21.557                                |
| Pendimethalin                       | 20.991                                |
| Alpha-endosulfan                    | 22.637                                |
| Procymidone                         | 21.962                                |
| <i>Beta</i> -endosulfan             | 25.3158                               |
| Endosulfan sulfate                  | 26.76                                 |
| Acrinathrin                         | 30.724                                |
| Aldrin                              | 18.528                                |
| Chlorpyrifos                        | 19.234                                |
| 4,4'-Dichlorobenzophenone (dicofol) | 19.201                                |

# Table 2 shows the time segments. MS1 and MS2 resolutions were wide/wide throughout. Dwell time was 10 ms.

Table 2. Time segments.

| Compound            | Precursor ion | Product ion | <b>Collision energy</b> | Compound                  | Precursor ion | <b>Product</b> ion | Collision energy |
|---------------------|---------------|-------------|-------------------------|---------------------------|---------------|--------------------|------------------|
| Time segment 2      |               |             |                         | Time segment 8            |               |                    |                  |
| Chlorpropham        | 213           | 171         | 5                       | 4,4'-Dichlorobenzophenone | 139           | 111                | 15               |
| Chlorpropham        | 213           | 127         | 5                       | 4,4'-Dichlorobenzophenone | 139           | 75                 | 35               |
| Heptenophos         | 124           | 89          | 20                      | Aldrin                    | 263           | 193                | 30               |
| Heptenophos         | 124           | 63          | 35                      | Aldrin                    | 263           | 191                | 30               |
| Time segment 3      |               |             |                         | Chlorpyrifos              | 197           | 169                | 15               |
| Hexachlorobenzene   | 284           | 249         | 20                      | Chlorpyrifos              | 197           | 107                | 40               |
| Hexachlorobenzene   | 284           | 214         | 35                      | Fenitrothion              | 277           | 125                | 15               |
| Time segment 4      |               |             |                         | Fenitrothion              | 277           | 109                | 20               |
| Fonofos             | 246           | 109         | 15                      | Parathion                 | 291           | 109                | 10               |
| Fonofos             | 246           | 81          | 30                      | Parathion                 | 291           | 81                 | 25               |
| Simazine            | 201           | 186         | 5                       | Pirimiphos methyl         | 305           | 290                | 10               |
| Simazine            | 201           | 173         | 5                       | Pirimiphos methyl         | 305           | 180                | 5                |
| Terbufos            | 231           | 175         | 10                      | Time segment 9            |               |                    |                  |
| Terbufos            | 231           | 129         | 25                      | Chlorthal dimethyl        | 301           | 223                | 25               |
| Terbutbylazine      | 214           | 132         | 10                      | Chlorthal dimethyl        | 299           | 221                | 25               |
| Torbuthylazino      | 214           | 10/         | 20                      | Time segment 10           |               |                    |                  |
| Time cogmont 5      | 214           | 104         | 20                      | Chlorfenvinphos           | 267           | 159                | 15               |
| Dissinger           | 170           | 107         | 20                      | Chlorfenvinphos           | 267           | 81                 | 30               |
| Diazinon            | 179           | 101         | 20                      | Pendimethalin             | 252           | 162                | 10               |
| Diazinon            | 179           | 121         | 40                      | Pendimethalin             | 252           | 161                | 20               |
| Fonotos             | 240           | 109         | 15                      | Time segment 11           |               |                    |                  |
| Fonotos             | 246           | 81          | 30                      | Endosulfan (alpha isomer) | 241           | 206                | 10               |
| lerbutos            | 231           | 175         | 10                      | Endosulfan (alpha isomer) | 241           | 170                | 20               |
| Terbufos            | 231           | 129         | 25                      | Procymidone               | 283           | 255                | 10               |
| Terbuthylazine      | 214           | 132         | 10                      | Procymidone               | 283           | 96                 | 10               |
| Terbuthylazine      | 214           | 104         | 20                      | Time segment 13           |               |                    |                  |
| Time segment 6      |               |             |                         | Endosulfan (beta isomer)  | 241           | 206                | 15               |
| Pirimicarb          | 238           | 166         | 10                      | Endosulfan (beta isomer)  | 195           | 159                | 5                |
| Pirimicarb          | 166           | 96          | 15                      | Time segment 14           |               |                    |                  |
| Terbacil            | 161           | 144         | 10                      | Endosulfan (beta isomer)  | 241           | 206                | 15               |
| Terbacil            | 161           | 88          | 20                      | Endosulfan (beta isomer)  | 195           | 159                | 5                |
| Time segment 7      |               |             |                         | Chloropropylate           | 251           | 139                | 15               |
| Chlorpyrifos methyl | 286           | 271         | 20                      | Chloropropylate           | 251           | 111                | 35               |
| Chlorpyrifos methyl | 286           | 93          | 25                      | Time segment 15           |               |                    |                  |
| Methyl parathion    | 263           | 109         | 15                      | Endosulfan sulfate        | 272           | 237                | 20               |
| Methyl parathion    | 263           | 79          | 30                      | Endosulfan sulfate        | 272           | 117                | 40               |
|                     |               |             |                         | Time segment 16           |               |                    |                  |
|                     |               |             |                         | Bifenthrin                | 181           | 166                | 20               |
|                     |               |             |                         | Bifenthrin                | 181           | 165                | 25               |

Time segment 17

Acrinathrin

Acrinathrin

93

181

5

5

289

208

#### Sample preparation

Olives were picked from local trees. The olives were cut into thin slices and a portion of the sample (approximately 1 g) was used for the analysis. The rest was stored frozen. If the olives contained a stone, it was removed and an estimate of the percentage contribution of stone present in the final sample was calculated. This is a legislative requirement for LMR in calculations. This was done by taking a representative portion of the sample (two or three whole pieces) to evaluate the percentage of the stone, as follows. First, weigh the representative samples containing the stone. Then, remove the stones from the samples and weigh them. Finally, calculate the percentage associated with the stones using Equation 1.

Egn.1

 $\% H = \frac{\text{Weight of stone}}{\text{Weight of sample}} \times 100$ 

Where: % H = percentage of the stone

#### Procedure

- 1. Weigh 10.0 g ± 0.1 g of chopped sample in a 50-mL centrifuge tube.
- Add 10 mL of the solvent mixture ethyl acetate:cyclohexane:acetone (1:1:4) then cap the tube and shake for at least 1 minute.
- 3. Add the Bond Elut QuEChERS extraction salt packet (p/n 5982-5650) to the sample tube; shake for 1 minute.
- 4. Centrifuge the tube at 4,000 rpm for 5 minutes.
- Transfer 6 mL of the upper organic layer into a 15-mL Bond Elut dispersive tube (p/n 5982-5156) to which an additional 300 mg of C18EC (p/n 5982-8082) has been added.
- 6. Shake for at least 1 minute, then centrifuge at 4,000 rpm for 5 minutes.
- 7. Transfer 1 to 2 mL of the upper organic layer extract to a chromatography vial and seal tightly.

### **Results and Discussion**

All target pesticides were separated and well detected by the HP-5ms Ultra Inert GC column. With the powerful selectivity provided by GC/MS/MS, the MRM chromatograms of the matrix blank did not show any interference peaks with the target analytes. Figure 1 shows the GC/MS/MS chromatogram of a 20  $\mu$ g/kg-fortified olive extract processed by the modified EN QuEChERS extraction method. Figure 2 shows the exceptional quantitative analysis of pesticides considered to be more problematic in olives and olive oil analysis, such as terbuthylazine and chlorpyrifos.

### Calculations

Once the pesticide concentration in the vial was obtained from the calibration curve, we worked out sample concentrations in mg/kg using Equation 2.

$$C_{Pesticide}(mg/kg) = C_{Pesticide}(\mu g/L) \times \frac{10}{W} \times 1e - 3 \times [1 - (\frac{\% H}{100})]$$
Eqn.2

Where:

 $C_{Pesticide}$  = concentration (µg/L) obtained from the calibration curve

W = initial weight of the sample taken for the test in g (10.0 g)

% *H* = percentage contribution of stones (if necessary)

The final result is expressed in I.S. units, and results given in  $\mu g/kg.$ 



Figure 1. Overlay of MRM transitions of 27 pesticides spiked in olives at 20 µg/kg obtained using GC/MS/MS.



Figure 2. A) Terbuthylazine at 5  $\mu$ g/kg g/kg, R<sup>2</sup> = 0.9999. B) Chlorpyrifos at 5  $\mu$ g/kg, R<sup>2</sup> = 0.9999.

#### Linearity and limit of quantification (LOQ)

The linearity calibration range for all the pesticides tested was 5 to 60  $\mu$ g/kg. Calibration curves using spiked matrix blanks were made at 5, 10, 20, and 60  $\mu$ g/kg, where 60  $\mu$ g/kg was at least 120% of the upper limit. The calibration curves were generated by plotting the relative responses of the analytes. The 10  $\mu$ g/kg quantification limits established for all pesticides were at or below the MRLs of these pesticides in fruits and vegetables. The correlation coefficients (R<sup>2</sup>) for all compounds were > 0.9999.

Table 3. Recovery %, (RSD%), and reproducibility of pesticides in olives with Agilent Bond Elut QuEChERS EN extraction method and solvent modified dispersive SPE kit for fruits and vegetables with fats and waxes.

| Compound                          | L1             | L2            | L3             |
|-----------------------------------|----------------|---------------|----------------|
| 4,4'-Dichlorobenzophenone         | 93.94 (7.32)   | 92.95 (7.62)  | 106.43 (6.28)  |
| Acrinathrin                       | 101.92 (6.66)  | 95.13 (14.01) | 105.25 (2.00)  |
| Aldrin                            | 90.46 (12.86)  | 90.36 (9.60)  | 100.00 (10.52) |
| Bifenthrin                        | 96.50 (9.12)   | 95.88 (7.87)  | 104.29 (8.01)  |
| Chlorpyrifos                      | 93.15 (4.43)   | 86.07 (14.21) | 108.10 (5.53)  |
| Chlorthal dimethyl                | 98.78 (5.78)   | 96.05 (7.47)  | 99.96 (16.41)  |
| Chlorfenvinphos                   | 93.10 (6.04)   | 89.01 (11.80) | 106.86 (6.38)  |
| Chloropropylate                   | 91.24 (7.46)   | 86.68 (7.88)  | 108.70 (5.41)  |
| Chlorpyrifos methyl               | 100.40 (11.72) | 92.70 (8.63)  | 110.22 (3.23)  |
| Chlorpropham                      | 98.38 (7.30)   | 91.00 (15.89) | 105.07 (6.86)  |
| Diazinon                          | 94.11 (10.24)  | 94.68 (14.24) | 108.81 (5.98)  |
| Endosulfan ( <i>alpha</i> isomer) | 89.13 (16.31)  | 93.97 (11.88) | 105.55 (5.64)  |
| Endosulfan <i>beta</i>            | 83.90 (21.05)  | 93.06 (10.03) | 98.25 (4.41)   |
| Endosulfan sulfate                | 94.67 (4.76)   | 93.48 (7.74)  | 109.58 (4.75)  |
| Fenitrothion                      | 91.48 (8.74)   | 86.33 (17.91) | 109.38 (10.91) |
| Fonofos                           | 89.55 (5.21)   | 91.06 (9.75)  | 104.63 (7.52)  |
| Heptenophos                       | 97.24 (4.02)   | 93.55 (17.02) | 101.78 (12.40) |
| Hexachlorobenzene                 | 95.25 (3.52)   | 87.10 (8.51)  | 105.62 (7.34)  |
| Parathion-methyl                  | 94.00 (15.54)  | 85.27 (10.50) | 104.57 (7.81)  |
| Parathion                         | 86.26 (11.20)  | 81.57 (10.98) | 94.98 (10.91)  |
| Pendimethalin                     | 90.25 (12.40)  | 81.78 (7.91)  | 96.00 (4.64)   |
| Pirimicarb                        | 84.52 (5.09)   | 76.15 (5.43)  | 89.66 (10.16)  |
| Pirimiphos methyl                 | 93.02 (7.29)   | 85.34 (13.69) | 106.92 (5.54)  |
| Procymidone                       | 90.75 (7.97)   | 85.04 (3.41)  | 98.88 (7.29)   |
| Simazine                          | 94.12 (4.59)   | 90.17 (11.80) | 105.81 (8.75)  |
| Terbufos                          | 105.06 (8.45)  | 98.92 (9.06)  | 112.62 (6.92)  |
| Terbuthylazine                    | 97.31 (9.04)   | 91.66 (7.59)  | 105.34 (9.99)  |

#### Level Calibration points ( $\mu$ g/L) Limit of quantification ( $\mu$ g/kg)

10.0

L1 5.0 (at least 70% LQ)

L2 10

L3 20

L4 60 (at least 120% of upper limit)

#### **Recovery and reproducibility**

Recovery and reproducibility were evaluated by spiking pesticide standards in comminuted olive samples at levels of 5, 10, and 20  $\mu$ g/kg, which were then prepared by the EN QuEChERS extraction method and the solvent-modified cleanup method. These QC samples were quantitated against the matrix spike calibration curve. The analysis was performed in replicates of five at each level. The recovery and reproducibility (RSD) data are shown in Table 3. It can be seen that the 27 pesticides had excellent recoveries and precision.

# Conclusions

The Agilent Bond Elut QuEChERS EN buffered extraction kits and dispersive-SPE kits for fruits and vegetables containing fats and waxes, with a modified-solvent mixture, provided a simple, fast, and effective method for the purification of representative pesticides in olives. The recovery and reproducibility, based on matrix-spiked standards, were acceptable for multiclass pesticide determination in olives. The matrix effects from the olives did not interfere with the quantitation of target compounds. The LOQs of the pesticides were at or below regulated MRLs in foods. As the selected pesticides represented a broad variety of different classes and properties, Bond Elut QuEChERS EN extraction and dispersive-SPE with modified solvent mixtures are excellent choices for other pesticides in similar food matrixes.

### References

- Anon. Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed. SANCO/12571\_2013. European Commission (2013).
- 2. L. Alder, et al. Mass Spectrom. Rev. 25, 838 (2006).
- 3. F. Hernández, et al. Anal. Methods 5, 5875 (2003).
- Anon. Foods of plant origin. Determination of pesticide residues using GC-MS and/or LC-MS/MS following acetonitrile extraction/partitioning and clean-up by dispersive SPE. QuEChERS-method. EN 15662. European Standard.

# For More Information

These data represent typical results. For more information on our products and services, visit our Web site at www.agilent.com/chem.

### www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc., 2014 Printed in the USA June 18, 2014 5991-4800EN

