

Phthalates Analysis in Fruit Juice Using an Agilent 5977E GC/MSD

Application Note

Food

Author

Suli Zhao Ming Yan Agilent Technologies (Shanghai) Co., Ltd. 412 Yinglun Road Shanghai 200131 China

Abstract

This application note demonstrates an effective solution of phthalates using an Agilent 5977E GC/MSD. The 5977E GC/MSD, in synchronous full scan/selected ion monitoring (Scan/SIM) acquisition mode, provides high sensitivity to detect 16 phthalate esters. All of the phthalates show excellent linearity and relative standard deviations (RSD%).

Introduction

Phthalate esters are the main plasticizers used as softening agents in the production of PVC. These compounds are reported to act as endocrine disruptors, and exposure to high levels can cause harmful effects in the human reproductive system. There have been reports from the U.S. Food and Drug Administration that certain foods and beverages, particularly fruit juices, contain high levels of phthalates.

China published a methodology with an extraction method for 16 phthalates in foods [1]. This application note focuses on the 16 phthalates including 15 compounds included in GB/T 21911-2008 with one exception. Hexyl-2-ethylhexyl phthalate was used to replace diphenyl phthalate because of the standards ordered. This application note demonstrates an analytical procedure for the quantitative analysis of 16 phthalate esters in fruit juice between the concentrations of 0.5 and 8.0 mg/L. The sample preparation of the phthalate esters was based on liquid-liquid extraction.

Experiment

Reagents and chemicals

All reagents were analytical or HPLC grade. The Phthalates standard was purchased from J&K (phthalate esters-Analyze Mix 3, 08060300). *n*-hexane was purchased from ANPEL, Shanghai. Table 1 lists the phthalates compounds. In the standard solution, *bis*(4-methyl-2-pentyl) phthalate (BMPP) is a mixture of two diastereomers, and dinonyl phthalate (DNP) is a mixture of isomers.

Equipment and materials

This experiment was performed on an Agilent 5977E GC/MSD equipped with an Agilent 7650A Automatic Liquid Sampler (G4567a). Separation of the compounds was achieved on an Agilent HP-5ms UI column 30 m \times 0.25 mm, 0.25 μ m (p/n 19091S-433UI). Table 2 lists the instrumental conditions.

Sample preparation

Because fruit juice is a non-fatty sample, we used the GB/T 21911-2008 sample preparation method. Place 5 mL of juice into one vial and add into it 2 mL *n*-hexane; vortex for 1 minute and let stand for 10 minutes. Remove 1 mL of the top *n*-hexane layer for GC/MS use.

Table 1. Phthalate Compounds

Name	Cas.
dimethyl phthalate (DMP)	131-11-3
diethyl phthalate (DEP)	84-66-2
di iso butyl phthalate (DIBP)	84-69-5
di butyl phthalate (DBP)	84-74-2
bis(2-methoxy ethyl) phthalate (DMEP)	117-82-8
bis(4-methyl-2-pentyl) phthalate (BMPP)	146-50-9
bis(2-ethoxy ethyl) phthalate (DEEP)	605-54-9
bis(n-pentyl) phthalate (DPP)	131-18-0
dihexyl phthalate (DHXP)	84-75-3
benzyl butyl phthalate (BBP)	85-68-7
hexyl-2-ethylhexyl phthalate (HEHP)	75673-16-4
bis(2-n-butoxyethyl) phthalate (DBEP)	117-83-9
dicyclohexyl phthalate (DCHP)	84-61-7
bis(2-ethylhexyl) phthalate (DEHP)	117-81-7
di- <i>n</i> -octyl phthalate (DNOP)	117-84-0
dinonyl phthalate (DNP)	84-76-4

Instrument conditions

Table 2. Instrumentation and Conditions of Analysis

Table 2. Instrumentation and Conditions of Analysis					
Instrumentation					
ALS	Agilent 7650A Automatic Liquid Sampler, 50 vials				
GC/MS system	Agilent 5977E GC/MSD				
Inlet	Split/splitless				
Liner	Ultra inert, p/n 5190-2293, splitless				
Column	Agilent HP-5ms UI LTM, 30 m × 0.25 mm, 0.25 μm (p/n 19091S-433UI)				
ALS experimental conditions					
Injection mode	Fast				
Inlet temperature	250 °C				
Injection volume	1 μL				
Injection mode	Splitless				
Carrier gas	Helium				
Constant flow	1.0 mL/min				
Oven temperature	60 °C (1 minute), 20 °C/min, 220 °C (1 minute), 5 °C/min, 280 °C (4 minutes)				
MSD interface	280 °C				
lon source	300 °C				
Quad. temperature	150 °C				
lonization mode	EI				
Scan mode	Scan/SIM, 50–550 u; SIM ions are listed in Table 2 $$				
EMV mode	Gain factor				
Gain factor	5				

1.625 V

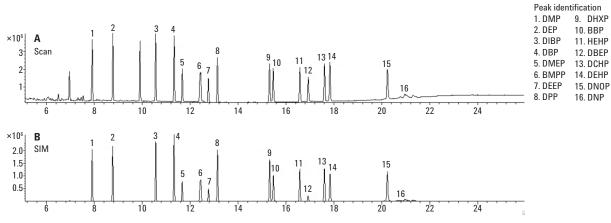
5.0 minutes

EMV voltage Solvent delay

Calibration levels

The Chinese GB/T 21911-2008 describes five calibration solutions made by dilution in *n*-hexane. The concentration levels were: 0.5, 1.0, 2.0, 4.0, and 8.0 mg/L.

To prepare the spiked samples, add 250 μ L of 8.0 mg/L solution to 5 mL of juice liquid to get a 0.4 mg/L spiked sample. Then add 2 mL of *n*-hexane to extract the targets from the juice. Remove 1 mL of the top *n*-hexane layer for GC/MS injection.


Results and Discussion

Qualitative and quantitative results

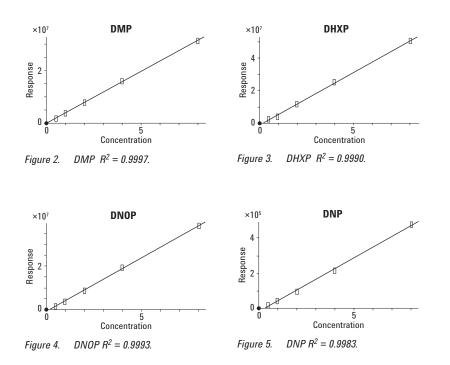
This application note used the synchronous Scan/SIM acquisition mode, as required by GB/T 21911-2008. Table 3 describes the SIM information of phthalates. Typical total ion chromatograms (TIC) of the phthalates are shown in Figure 1 with a 1.0 mg/L calibration level.

Table 3. Calibration of Phthalates (*Indicates Quantitative lons)

Name	R.T (min)	SIM groups (start time min)	SIM ions (dell time = 100ms)
dimethyl phthalate (DMP)	7.901	1 from 5.0	77; 163*; 194
diethyl phthalate (DEP)	8.766	2 from 8.30	149*; 177;222
di-iso-butyl phthalate (DIBP)	10.564	3 from 9.30	149*; 205; 223
di-butyl phthalate (DBP)	11.326	4 from 10.96	149*; 205; 223
bis(2-methoxy ethyl) phthalate (DMEP)	11.661	5 from 11.49	59; 149*; 193
bis(4-methyl-2-pentyl) phthalate (BMPP)	12.433	6 from 12.0	149*; 167; 251
bis(2-ethoxy ethyl) phthalate (DEEP)	12.758	7 from 12.60	72; 149*; 221
<i>bis</i> (<i>n</i> -pentyl) phthalate (DPP)	13.147	8 from 12.95	149*; 219; 237
dihexyl phthalate (DHXP)	15.318	9 from 14.50	76; 104; 149*
benzyl butyl phthalate (BBP)	15.469	10 from 15.39	91; 149*; 206
hexyl-2-ethylhexyl phthalate (HEHP)	16.582	11 from 16.00	149*; 167; 251
bis(2-n-butoxyethyl) phthalate (DBEP)	16.928	12 from 16.77	149; 205; 223
dicyclohexyl phthalate (DCHP)	17.608	13 from 17.30	149*; 167; 249
bis(2-ethylhexyl) phthalate (DEHP)	17.835	14 from 17.72	149; 167; 279*
di- <i>n</i> -octyl phthalate (DNOP)	20.240	15 from 19.00	149; 167; 279*
dinonyl phthalate (DNP)	From 20.05 ~ 21.915	16 from 19.00	149; 167; 293*

Linearity

Table 4 describes the linearity of the 16 phthalates, and all of the compounds have excellent coefficients from 0.5 to 8.0 mg/L calibration levels.


Figures 2 to 5 show the linearity curve of some phthalates. Good linearity can provide reliable quantitative results.

Real sample

Orange juice from a local supermarket was prepared according to the sample preparation step. A phthalates standard was added to a juice blank extraction to get a 0.4 mg/L spiked sample solution. A 2.0 mL amount of *n*-hexane was added to extract the targets. Six injections were made to test the stability of the *n*-hexane extraction. Figure 6 is an overlay chromatogram of SIM mode. The RSD% of 16 phthalates was from 0.295 to 1.573. This data shows that the 5977E GC/MSD has excellent stability and reliability for fruit juice.

Table 4. Linearity of 16 Phthalates (SIM Mode)

Name	Coefficient (R ²)	
dimethyl pht	halate (DMP)	0.9997
diethyl phtha	late (DEP)	0.9999
di-iso-butyl p	hthalate (DIBP)	0.9996
di-butyl phth	alate (DBP)	0.9989
bis(2-methox	xy ethyl) phthalate (DMEP)	0.9996
bis(4-methyl-	2-pentyl) phthalate (BMPP)	0.9996
bis(2-ethoxy	ethyl) phthalate (DEEP)	0.9997
<i>bis</i> (<i>n</i> -pentyl)	phthalate (DPP)	0.9993
dihexyl phtha	alate (DHXP)	0.9990
benzyl butyl	phthalate (BBP)	0.9992
hexyl-2-ethyl	hexyl phthalate (HEHP)	0.9997
bis(2-n-buto	kyethyl) phthalate (DBEP)	0.9992
dicyclohexyl	phthalate (DCHP)	0.9981
bis(2-ethylhe	exyl) phthalate (DEHP)	0.9998
di- <i>n</i> -octyl ph	thalate (DNOP)	0.9993
dinonyl phtha	alate (DNP)	0.9983

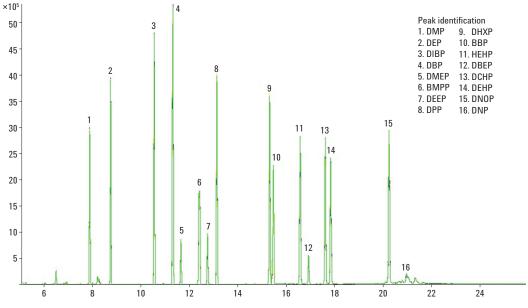


Figure 6. The overlay SIM chromatogram of six injections of spiked sample solution.

Conclusions

The method developed on the Agilent 5977E GC/MSD indicates that it is a good tool for the determination of phthalates in fruit juice. The results are very promising for both linearity and repeatability. The 5977E GC/MSD is a reliable instrument for the phthalates analysis in fruit juice.

Reference

1. GB/T 21911-2008 Determination of phthalate esters in foods.

For More Information

These data represent typical results. For more information on our products and services, visit our Web site at www.agilent.com/chem.

www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc., 2013 Printed in the USA November 4, 2013 5991-3441EN

