

Application News

GC-MS GCMS-QP[™]2020 NX, GCMS-TQ[™] NX series

Classification of Unknown Samples by Fatty Acids

No. M307

Y. Nakagawa

User Benefits

- ◆ Simple workflow from LabSolutions Insight[™] to multivariate analysis/machine learning software
- ◆ R&D by identifying new sample groups with a list of compounds critical in separating those groups
 - Predict/Classify an unknown sample into the known sample groups

Introduction

Fatty acids, particularly those with a high degree of unsaturation and a carbon backbone of a middle

chain length, are known as functional nutrients.

Multivariate analysis is often used in profiling oils of food origin, but it can also be applied in profiling brans to facilitate their class characterization aside from mere physical traits.

Shimadzu Corporation Japan has entered the second year of the three year collaborative research with National Agriculture and Food Research Organization (NARO) on the amount of functional nutrients (e.g. fatty acids) in foods such as brans, tea leaves and rice.

As a part of the collaboration, fatty acids (Table 1) were quantitated in 48 bran samples. While details of the results are in non-disclosure agreement, analysis workflow will be discussed in this article.

Orange Data Mining (University of Ljubljana) was employed to identify three distinct groups out of the 48 bran samples and create a list of compounds that were important in classifying those clusters.

Fig. 1 GCMS-QP[™]2020 NX

LabSolutions Insight

Two features of LabSolutions Insight in particular facilitated data analysis: the automatic integration and the flagging.

Automatic integration allowed any manual integration that needed to be performed to be applied to all samples. The flagging highlighted compounds with detector saturations which would be unsuitable for subsequent area comparison.

48 samples were analyzed for FAME 37 in less than 20 mins. A csv file that tabulated sample and compound in terms of peak area was exported from LabSolutions for further analysis.

ips						
Table 1 A List of Target Compounds						
Abbreviation	Common Name (Methyl Derivative)					
C4:0	Methyl butyrate					
C6:0	Methyl hexanoate					
C8:0	Methyl octanoate					
C10:0	Methyl decanoate					
C11:0	Methyl undecanoate					
C12:0	Methyl laurate					
C13:0	Methyl tridecanoate					
C14:0	Methyl myristate					
C14:1(9c)	Methyl myristoleate					
C15:0	Methyl pentadecanoate					
C15:1(10c)	Methyl cis-10-pentadecenoate					
C16:0	Methyl palmitate					
C16:1(9c)	Methyl palmitoleate					
C17:0	Methyl heptadecanoate					
	cis-10-Heptadecanoic acid methyl					
C17:1(10c)	ester					
C18:0	Methyl stearate					
C18:1(9t)	trans-9-Elaidic acid methyl ester					
C18:1(9c)	cis-9-Oleic acid methyl ester					
C18:2(9t,12t)	Methyl linolelaidate					
C18:2(9c,12c)	Methyl linoleate					
C18:3(6c,9c,12c)	Methyl inoleate Methyl γ-linolenate Methyl linolenate					
C18:3(9c,12c,15c)						
C20:0	Methyl arachidate					
C20:1(11c)	Methyl cis-11-eicosenoate					
C20.1(11C)						
C20:2(11c,14c)	cis-11,14-Eicosadienoic acid methyl ester					
C21:0	Methyl heneicosanoate					
(20.2/9c 11c 14c)	cis-8,11,14-Eicosatrienoic acid					
C20:3(8c,11c,14c)	methyl ester					
$C_{20} \cdot 4/(E_{c}, 0 - 11 - 14 - 1)$	cis-5,8,11,14-Eicosatetraenoic acid					
C20:4(5c,8c,11c,14c)	methyl ester					
(20.2/11 + 14 + 17 -)	cis-11,14,17-Eicosatrienoic acid					
C20:3(11c,14c,17c)	methyl ester					
C22:0	Methyl behenate					
C20:5(5c,8c,11c,14c,	cis-5,8,11,14,17-Eicosapentaenoic					
17c)	acid methyl ester					
C22:1(13c)	Methyl erucate					
	cis-13,16-Docosadienoic acid methyl					
C22:2(13c,16c)	ester					
C23:0	Methyl tricosanoate					
C24:0	Methyl lignocerate					
C24:1(15c)	Methyl nervonate					
C22:6(4c,7c,10c,13c,	cis-4,7,10,13,16,19-Docosahexaenoic					
16c,19c)	acid methyl ester					
-,,	· · · · · · · · · · · · · · · · · · ·					

CSV File Loading

It is a common error to load a csv file without "preparing" data first. The preparation involves removal of any compound from the Excel column that lacks peak area value (i.e. 0, not integrated) for any of the 48 samples. Compounds with saturation were not integrated in Insight and deleted in this step. 37 compounds were now down to 25 compounds.

Orange Data Mining further reduced the number of compounds by identifying and deleting compounds that do not have a normal distribution (Fig. 2). This reduced the number of compounds from 25 to 16.

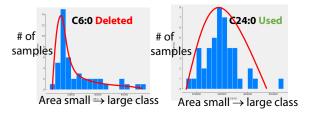


Fig. 2 Distribution Examination

Finally, positive or negative correlation between any 2 of the 16 compounds were examined. Highly correlated compounds were combined into one by averaging (Fig. 3).

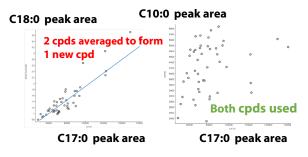


Fig. 3 C17:0 and C18:0

Principle Component Analysis

PCA was performed to identify clusters within the 48 samples. The 3 clusters were identified with the PC1 and 2 cumulative of ca. 80 %.

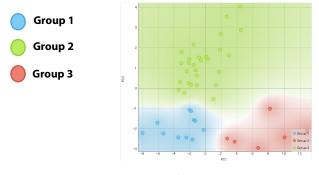


Fig. 4 PCA Plot

Predict and Classify Unknown

A few clicks gave the compound lists that were important in separating the groups. For instance, C12:0 was decisive in separating the group 1 and 3 (Fig. 5)

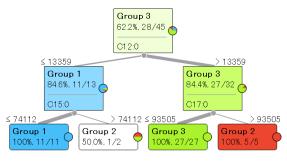


Fig. 5 Classification Tree

Three unknown sample were run, analyzed and subsequently classified into one of the three groups (Fig. 6)

	classification	Sample	C6:0	C8:0	C10:0	
1	Group 2	Unknown 1	26175	4767	4681	1649
2	Group 3	Unknown 2	28901	3649	4485	1665
3	Group 2	Unknown 3	46260	5417	5162	2317

Fig. 6 Classification of Unknown Sample

Summary

48 bran samples were analyzed for 37 fatty acids, using GCMS-QP[™]2020 NX. The objective was to group similar samples into a cluster, identify a list of compounds characteristic to a given group and create a model that classifies an unknown sample.

The objectives were met with Orange Data Mining (University of Ljubljana). LabSolutions Insight exported a csv file that was loaded onto the software. With the software being stand alone type, there was no need to upload data onto internet.

Three clusters were found and important fatty acids in the classification process were identified. The model was created and tested with unknown samples, giving the correct results.

Shimadzu Corporation would like to thank Hironori Juichi, Yayoi Ichiki and Mari Yamamoto from NARO for their guidance in leading the project.

GCMS, GCMS-QP, GCMS-TQ and LabSolutions Insight are trademarks of Shimadzu Corporation in Japan and/or other countries.

Shimadzu Corporation

Analytical & Measuring Instruments Division **Global Application Development Center**

First Edition: Dec. 2020

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu See http://www.shimadzu.com/about/trademarks/index.html for details Third party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not they

are used with trademark symbol "TM" or "@". The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or

completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.

For Research Use Only. Not for use in diagnostic procedure. This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.