

Application Note

Roger Bardsley, Applications Chemist; Teledyne Tekmar

Introduction

The Korean Standard Method for Drinking Water ES 04605.3 requires static headspace with Gas Chromatograph/Mass Spectrometer (GC/MS) to monitor formaldehyde. The method is based on the derivatization of formaldehyde with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA) to form the pentafluorobenzyl oximine compound within a static headspace vial.

The method requires that the Minimum Quantitation Limit (MQL) must be less than 10 ppb. The method requires the calibration curve to have a correlation coefficient greater than 0.98 or a Relative Standard Deviation (RSD) of the Response Factors (RF) less than 25%.

The Teledyne Tekmar HT3 Automated Static and Dynamic Headspace Vial Sampler was used to meet these requirements for formaldehyde in drinking water by the static headspace GC/MS method.

Standards

- 10 ppm p-bromofluorobenzene Internal Standard (IS)
- 5 ppm formaldehyde Stock Standard
- PFBHA solution, 1 mg/mL O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) in water

Calibration Curve and MQL

All standards and MQL samples were prepared similarly. 10 mL of deionized water was added to each headspace vial containing 3 g of sodium chloride. All vials were spiked with 20 µL of the 10 ppm IS solution. 1 mL of the PFBHA solution was added. The HT3 was equipped with an optional sample loader/mixer assembly with triangular head (Part No 14-9440-079) to provide vigorous mixing of the sample.

A calibration curve and seven MQL samples were prepared according to Table I. Seven 5 ppb standards were prepared for the MQL calculation.

Table I Calibration Curve and MQL Standard Dilution						
Standard Level (ppb)	Stock Standard	Sample Volume				
0	0 μL	10 mL				
5 and MQL	10 µL	10 mL				
10 and MQL	20 µL	10 mL				
20	40 µL	10 mL				
50	100 µL	10 mL				
100	200 µL	10 mL				

www.teledynetekmar.com

Sales/Support: 800-874-2004 • Main: 513-229-7000 4736 Socialville Foster Rd., Mason, OH 45040

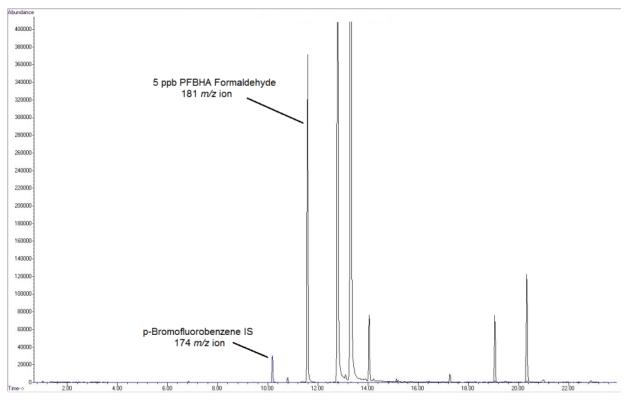
Page |1

Instrument Conditions

Table II Static (Loop) HT3 Headspace Instrument Parameters							
Variable	Value	Variable	Value				
Constant Heat Time	Off	Mixing Time	20.00 min				
G.C. Cycle Time	NA	Mixing Level	Level 10				
Valve Oven Temp	140 °C	Mixer Stabilization Time	3.00 min				
Transfer Line Temp	180 °C	Pressurize	14 psig				
Standby Flow Rate	50 mL/min	Pressurize Time	1.00 min				
Platen/Sample Temp	80 °C	Pressurize Equil Time	0.20 min				
Platen Temp Equil Time	0.10 min	Loop Fill Pressure	10 psig				
Sample Equil Time	2.00 min	Loop Fill Time	1.00 min				
Mixer	On	Inject Time	1.00 min				

Table III Agilent 7890B GC with 5977A MS Parameters					
Variable	Value				
Column	Agilent DB-624UI, 20 m, 0.18 mm ID, 1 μm; Constant Flow 0.9 mL/min; Average Velocity 42.02 cm/sec				
Oven Program	40 °C for 2 min; 10 °C/min to 210 °C, hold for 5 min				
Inlet	Temp 200 °C; Helium Carrier Gas; Septum Purge Flow 0.5 mL/min, 1 mm IP Deact. Liner Split Ratio - 15:1				
MS	Source Temp 230 °C; Quad Temp 150 °C ; Solvent Delay 0.50 min; Atune; Transfer Line 225 °C ;Scan Mode; Trace Ion Detection On				
Scan Mode	Scan - 35.0 m/z to 270.0 m/z, Threshold 10, Sampling Rate N=3				

Static (Loop) Headspace Mass Spectrometry Results


The chromatograms were evaluated using the Agilent Environmental ChemStation[™] software. Figure 1 is the quantitation ion chromatogram of a 5 ppb MQL standard by the static headspace method. The quantitation ions that were used for the IS calculation are shown in Figure 1, Table IV and Table V. The RF of formaldehyde was calculated versus the p-bromofluorobenzene IS.

The six standards were evaluated for linearity and RSD of the Relative RF (RRF). The method has a significant PFBHA formaldehyde background peak from the formaldehyde present in methanol. The RSD of the RRF was greater than the allowable 25% due to the background peak. The RRF was also calculated with this background peak subtracted.

The concentrations of the seven 5 ppb MQL samples were calculated by the linear calibration curve, the RRF and the RRF less the background area. The MQL was calculated by multiplying the standard deviation of the calculated amount of the seven MQL samples times 10. Table IV presents the RSD of the RRF and its calculated MQL including the background subtracted data. Table V presents the linear correlation coefficient (r^2) and its calculated MQL data.

Figure 1 Static headspace quantitation ion chromatogram of a 5 ppb PFBHA formaldehyde standard with p-bromofluorobenzene internal standard.

Table IV %RSD and MQL Results with Static Headspace and Scan GC/MS									
Compound	Quant Ion	RRF Calculation			RRF Calculation Less Background				
		% RSD	MQL (ppb)	Calc Recovery	% Theory	%RSD	MQL (ppb)	Calc Recovery	% Theory
p-Bromofluorobenzene IS	174	3.7	NA	NA	NA	3.7	NA	NA	NA
PFBHA Formaldehyde	181	27.9	11.7	7.8 ppb	156	16.0	9.8	5.2 ppb	105

Table V Linearity and MQL Results with Static Headspace and Scan GC/MS						
Compound	Quant Ion	Linear Calculation				
		r²	MQL (ppb)	Calc Recovery	% Theory	
p-Bromofluorobenzene IS	174	NA	NA	NA	NA	
PFBHA Formaldehyde	181	0.9968	9.3	5.9 ppb	118	

Conclusions

The Teledyne Tekmar HT3 Automated Static and Dynamic Headspace Vial Sampler and the method used for the detection of formaldehyde by the derivatization with PFBHA, surpassed the method requirements for the correlation coefficient and MQL as required by the Ministry of Environment. The %RSD requirement for the calibration curve passed when the background formaldehyde was subtracted. The linear calibration method provided a better calculation of the sample concentration without the need for subtracting the background formaldehyde present.

- Korean: ES 04605.3, 폼알데하이드-헤드스페이스/기체크로마토그래피-질량분석법
- English: ES 04605.3, Formaldehyde-Headspace/Gas Chromatography-Mass Spectrometry

Special thanks to Ju-Hyun, Han of Young-In Scientific Co Ltd of Seoul Korea for translation of the method and the method requirements.