

USP <467> Headspace Residual Solvent Assay with a HT3™ Headspace Instrument

# **Application Note**

### Abstract

The US Pharmacopeia recently released USP<467> as the current monograph for determining residual solvents in pharmaceutical products by static headspace. The USP classified these residual solvents into 3 categories; Class 1, Class 2 and Class 3. This headspace method does not require further validation if the USP parameters are followed.

Following USP<467> monograph parameters, this study utilizes a Teledyne Tekmar HT3 Headspace Instrument (Figure 1) in the static mode, eliminating the need for extensive USP mandated method validation. The Class 1 compounds were evaluated from 50% to 500% of the USP limits. The Class 2 compounds were evaluated from 25% to 400% of the USP limits.



The HT3 met all of the requirements of the recently released USP<467> Residual Solvent headspace monograph for both Class 1 and Class 2 solvents.

### **Introduction**

The monograph classified residual solvents in pharmaceutical products into 3 categories based on their potential health risks. Class 1 solvents are compounds known to have unacceptable toxicities or environmental concerns and should be avoided unless there use can be strongly justified in a risk-benefit assessment. Class 2 solvents are compounds with less severe toxicities and their amounts limited in order to protect patients from potential adverse effects. Class 3 solvents are less toxic and should be used where practical.

The monograph also uses 2 GC columns with different polarities. The USP definition for liquid phase of the G43 column is 6%cyanopropylphenyl – 94%dimethylpolysiloxane. The USP definition for the liquid phase of the G16 polyethyleneglycol (av. Mol. Wt. 15000) is a high molecular weight compound of polyethylene glycol and a diepoxide.

### **Experimental-Instrument Conditions**

The HT3<sup>™</sup> headspace instrument was connected to Shimadzu Model GC-2010 GC with FID for this study. A Phenomenex Zebron ZB-624 column, 30m x 0.32mm x 1.8µm was used to meet the G43 column requirement of USP<467>. A Phenomenex Zebron ZB-WAXplus column, 30m x 0.32mm x 0.25µm was used to meet the G16 column requirement of USP<467>. The Shimadzu flow control was set to the linear velocity option to meet the USP<467> carrier gas flow control requirement of about 35cm/sec for both columns. Employing a 1mm ID inlet split liner provides better performance for use with the headspace analysis.

Sales/Support: 800-874-2004 · Main: 513-229-7000 4736 Socialville Foster Rd., Mason, OH 45040 www.teledynetekmar.com



USP<467> recommends 3 different headspace operating parameters. Headspace operating parameter set 3 was used for this study. The HT3 constant heat headspace method parameter was used to ensure that a new headspace sample was ready after each 60 minute GC run time. Increasing the HT3 oven temperature and the transfer line temperatures by 5°C from the Set 3 parameters improved gas transfer of the compounds as allowed by the USP. Tables 1 display the static HT3 conditions while Table 2 displays the GC/FID parameters for both columns.

| HT3 Headspace Instrument Parameters |           |                       |          |  |  |  |  |
|-------------------------------------|-----------|-----------------------|----------|--|--|--|--|
| Variable                            | Value     | Variable              | Value    |  |  |  |  |
| Constant Heat Time                  | On        | Pressurize            | 10 psig  |  |  |  |  |
| GC Cycle Time                       | 70 min    | Pressurize Time       | 0.50 min |  |  |  |  |
| Platen/Sample Temp                  | 80°C      | Pressurize Equil Time | 0.05 min |  |  |  |  |
| Valve Oven Temp                     | 110°C     | Loop Fill Pressure    | 5 psig   |  |  |  |  |
| Transfer Line Temp                  | 110°C     | Loop Fill Time        | 0.20 min |  |  |  |  |
| Standby Flow Rate                   | 50mL/min  | Inject Time           | 2.00 min |  |  |  |  |
| Sample Equil Time                   | 45.00 min |                       |          |  |  |  |  |

Table 1: Static and Dynamic HT3™ Parameters

| Shimadzu GC/FID Parameters     |                                                                                                                           |  |  |  |  |  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| USP G43 Column                 | Phenomenex <sup>®</sup> Zebron ZB-624, 30m, 0.32mm ID, 1.8µm; Linear Velocity 35 cm/sec                                   |  |  |  |  |  |
| USP G43 Column<br>Oven Program | 35°C for 20 min; 10°C/min to 240°C, hold for 20 min, run time 60 min                                                      |  |  |  |  |  |
| USP G16 Column                 | Phenomenex <sup>®</sup> Zebron ZB-WAXplus, 30m, 0.32mm ID, 0.25µm; Linear Velocity 35 cm/sec                              |  |  |  |  |  |
| USP G16 Column<br>Oven Program | 50°C for 20 min; 6°C/min to 165°C, hold for 20 min, Run Time 59.17 min                                                    |  |  |  |  |  |
| Inlet:                         | Split Ratio 5:1 for the G43 Column: 15:1 for G16 Column, Temperature 140 °C, Helium Carrier Gas, Linear Velocity 35cm/sec |  |  |  |  |  |
| FID                            | 320°C, Hydrogen Flow 35.0mL/min, Air Flow -400.0mL/min, Constant Column and Makeup Flow – 30mL/min                        |  |  |  |  |  |

Table 2: GC/FID Parameters

## **Standard Sample Preparation**

This study used Class 1, Class 2A and Class 2B USP residual solvent standards obtained from Restek. Dimethylsulfoxide (DMSO) was obtained from Sigma-Aldrich and was 99.5% grade.

Class 1, Class 2A and Class 2B standard stock solutions were prepared following the USP <467> procedure. 1.0mL of the appropriate standard was transferred to 20mL headspace vials containing 5mL of water. Procedure C requires the same concentration as the Procedure A standards to quantitate articles under test. Analyzing the standards in triplicate demonstrates the reproducibility of the method for each compound.



A series of standards were prepared from 50% to 500% of the concentration of the Class 1 Standard prepared as part of the method. Similar standards from 25% to 400% were generated from the Class 2A and 2B standards. Analyzing these samples singularly verified the linearity of the method over these ranges.

Parameters for evaluating the samples are listed in Table 1 and 2.

#### **Results and Conclusions**

This study used the Shimadzu GCSolution software Version 2.32 to evaluate the chromatography data. The peak area was used to calculate the %RSD for the triplicate injections of the single standards for each compound. The peak areas were also used to calculate the correlation coefficient  $r^2$  for the linear range of samples for each compound. The signal to noise ratio of all of the Class 1 compounds and the resolution between the acetonitrile and its required peaks were also generated using the Shimadzu GCSolution software.

Table 3 presents the data for the Class 1 compounds with both the G43 and the G16 column required by USP<467>. Figure 2 is the comparison of the USP standard concentration with the G43 and the G16 column. The numbers on the chromatograms correspond to the compound numbers in the tables.

Table 4 presents the data for the Class 2A compounds with both the G43 and the G16 column required by USP<467>. Figure 3 is the comparison of the USP standard concentration with the G43 and the G16 column.

Table 5 presents the data for the Class 2B compounds with both the G43 and the G16 column required by USP<467>. Figure 4 is the comparison of the USP standard concentration with the G43 and the G16 column.

| Class 1                   |                | G 43 Column |      |        | G 16 Column |                       |                |
|---------------------------|----------------|-------------|------|--------|-------------|-----------------------|----------------|
| Compound                  | Range (ppm)    | S/N         | %RSD | r²     | S/N         | % RSD                 | r <sup>2</sup> |
| 1,1-Dichloroethene (1)    | 0.033 to 0.333 | 54          | 2.7  | 0.9990 | 109         | 5.0                   | 0.9987         |
| 1,1,1-Trichloroethane (2) | 0.042 to 0.42  | 54          | 0.9  | 0.9984 | 78          | 1.2                   | 0.9984         |
| Carbon Tetrachloride (3)  | 0.017 to 0.17  | 4.5         | 5.6  | 0.9993 |             | Co elute <sup>A</sup> |                |
| Benzene (4)               | 0.008 to 0.083 | 71          | 2.1  | 0.9984 | 98          | 2.6                   | 0.9994         |
| 1,2-Dichloroethane (5)    | 0.021 to 0.21  | 52          | 1.4  | 0.9998 | 56          | 4.1                   | 1.0000         |

Table 3: Signal to Noise Ratio (S/N), Percent Relative Standard Deviation (%RSD, n=3) and Correlation Coefficient ( $r^2$ ) Data for the Class 1 Compounds with the G43 and G16 USP<467> Required Gas Chromatography Columns

A – Carbon tetrachloride co elutes with 1,1,1-trichloroethane with the G16 column but is separated from all peaks in the Class 1 standard with the G43 column.





Figure 2: Comparison of the Retention times of the Class 1 Compound at the USP Standard Concentration with the G43 Column (Left) and the G16 Column (Right). The additional peaks are system/DMSO related peaks. The numbers correspond to the compound numbers in Table 3.

| Class 2 A                       |                | G43 Column |                      |                | G16 Column |                  |                |
|---------------------------------|----------------|------------|----------------------|----------------|------------|------------------|----------------|
| Compound                        | Range (ppm)    | R          | %RSD                 | r <sup>2</sup> | R          | % RSD            | r <sup>2</sup> |
| Methanol (1)                    | 6.25 to 100    |            | 1.3                  | 0.9983         |            | 4.1              | 0.9981         |
| Acetonitrile (2)                | 0.854 to 10.25 | 1.0        | 2.1                  | 0.9983         | 2.2        | 2.6              | 0.9996         |
| Methylene Chloride (3)          | 1.25 to 20     |            | 2.6                  | 0.9997         |            | 4.7              | 0.9976         |
| trans-1,2-Dichloroethene<br>(4) | 1.96 to 31.3   |            | 2.1                  | 0.9994         |            | 5.8              | 0.9964         |
| cis-1,2-Dichloroethene (5)      | 1.96 to 31.3   |            | 2.2                  | 0.9987         |            | 5.3              | 0.9972         |
| Tetrahydrofuran (6)             | 1.44 to 17.25  |            | 5.1                  | 0.9951         |            | 4.2 <sup>B</sup> | 0.9991         |
| Cyclohexane (7)                 | 8.1 to 97      |            | 1.8                  | 0.9978         |            | 5.5              | 0.9960         |
| Methylcyclohexane (8)           | 2.46 to 29.5   |            | 1.2                  | 0.9988         |            | 5.2              | 0.9852         |
| 1,4-Dioxane (9)                 | 0.79 to 12.7   |            | 0.4                  | 0.9999         |            | 9.2              | 0.9978         |
| Toluene (10)                    | 1.85 to 22.25  |            | 1.8                  | 0.9988         |            | 5.9              | 0.9998         |
| Chlorobenzene (11)              | 0.75 to 9      |            | 1.6                  | 0.9990         |            | 6.0              | 0.9986         |
| Ethyl benzene (12)              | 0.77 to 9.2    |            | 0.9                  | 0.9988         |            | 6.5              | 0.9976         |
| p-Xylene (13)                   | 0.63 to 7.6    |            | 0.9                  | 0.9990         |            | 6.5              | 0.9978         |
| m-Xylene(14)                    | 2.72 to 32.6   |            | Coelute <sup>C</sup> |                |            | 6.5              | 0.9979         |
| o-Xylene (15)                   | 0.41 to 4.9    |            | 1.2                  | 0.9989         |            | 6.3              | 0.9992         |

Table 4: Resolution (R), Percent Relative Standard Deviation (%RSD, n=3) and Correlation Coefficient ( $r^2$ ) Data for the Class 2A Compounds with the G43 and G16 USP<467> Required Gas Chromatography Columns

*B* – Tetrahydrofuran is a shoulder on the trans 1,2-dichlororethene peak with the G16 column but is separated from all peaks in the Class 2A standard with the G43 column.

C – m-Xylene coelutes with p-xylene with the G43 column but is separated from all peaks in the Class 2A stanard with the G16 column.

Sales/Support: 800-874-2004 · Main: 513-229-7000 4736 Socialville Foster Rd., Mason, OH 45040 www.teledynetekmar.com





Figure 3: Comparison of the Retention Times of the Class 2A Compounds at the USP Standard Concentration with the G43 Column (Top) and the G16 Column (Bottom). The numbers correspond to the compound numbers in Table 4.

| Class 2B                |                | G43 Column |                | G16 Column |                |
|-------------------------|----------------|------------|----------------|------------|----------------|
| Compound                | Range (ppm)    | % RSD      | r <sup>2</sup> | % RSD      | r <sup>2</sup> |
| Hexane (1)              | 0.121 to 1.45  | 2.0        | 0.9940         | 4.3        | 0.9820         |
| Nitromethane (2)        | 0.042 to 0.333 | 3.6        | 0.9961         | 9.1        | 0.9983         |
| Chloroform (3)          | 0.025 to 0.4   | 2.2        | 0.9995         | 1.9        | 0.9994         |
| 1,2-Dimethoxyethane (4) | 0.083 to 0.667 | 5.1        | 0.9958         | 3.8        | 0.9997         |
| Trichloroethene (5)     | 0.033 to 0.533 | 1.6        | 0.9989         | 2.7        | 0.9984         |
| Pyridine (6)            | 0.083 to 1.33  | 9.9        | 0.9995         | 3.8        | 0.9986         |
| 2-Hexanone (7)          | 0.021 to 0.333 | 2.1        | 0.9999         | 5.4        | 0.9987         |
| Tetralin (8)            | 0.042 to 0.669 | 0.8        | 0.9995         | 2.2        | 0.9999         |

Table 5: Percent Relative Standard Deviation (%RSD, n=3) and Correlation Coefficient ( $r^2$ ) Data for the Class 2B Compounds with the G43 and G16 USP<467> Required Gas Chromatography Columns





Figure 4: Comparison of the Retention Times of the Class 2B Compounds at the USP Standard Concentration with the G43 Column (Top) and the G16 Column (Bottom). The additional peaks are system/DMSO related peaks. The numbers correspond to the compound numbers in Table 5.

USP Chemical Test Monograph <467> for Residual Solvents was easily validated using the Teledyne Tekmar HT3 headspace instrument with Phenomenex columns and a Shimadzu GC/FID adequately meets the requirements of the recently.