Application News

No. C1 87

In recent years, the safety concern over textiles has been on a rise in addition to the environmental and food safety issues. Harmful substances in textiles are being regulated around the world, particularly EU region. Beside regional regulations, there are also strict regulations to ensure the safety of consumers. These include the adoption of independent inspection and certification on residual standard reference such as STANDARD 100 by OEKO-TEX ${ }^{\circledR}$ and chemical regulatory lists implemented by manufacturer.
Alkylphenol ethoxylates (APEOs) which are commonly used as textile surfactants are restricted by REACH regulation, especially nonylphenol ethoxylates (NPEOs). NPEOs can break down to nonylphenol (NP) which can cause endocrine disruption and other health issues.
"LC/MS/MS Method Package for Restricted Chemicals in Textiles" provides several types of methods for the various restricted chemicals for textiles. Here, we introduce the analysis of NPEOs and octylphenol ethoxylates (OPEOs), NP and octylphenol (OP) by using the method in them.
T. Tanigawa, N. Asano, Lee, Jun Xiang, Chew, Yin Ling, Xing, Jie, Zhan, Zhaoqi

LC-MS/MS Analysis (APEOs)

These analyses were performed by using the method contained in the Method Package. Fig. 1 shows each structure of the compound. APEOs are non-ionic surfactants that are synthesized by reactions between alkylphenols (APs) and ethylene oxide (EO). Each product is a mixture of different NPEOs or OPEOs with a variable number of ethoxylate (EO) groups. (Table 1) Therefore, the quantitation was performed by the sum of all APEOs. The ammonia adduct ions $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ were selected as the precursor ions. Table 2 shows the analytical conditions. The LC analysis conditions were according to the ISO-18254. On the other hand, the MS analysis conditions were optimized for the triple quadrupole mass spectrometer.

Fig. 1 Structure of a) NPEO, b) OPEO

Table 1 MRM transition

compounds	n	Molecular formula	Precursor ion (m / z)	Product ion (m / z)
NPEO	3	C15H24O(C2H4O)3	370.3	227.10
	4	C15H24O(C2H4O)4	414.3	271.15
	5	C15H24O(C2H4O)5	458.3	441.35
	6	C15H24O(C2H4O)6	502.4	485.30
	7	C15H24O(C2H4O)7	546.4	529.35
	8	C15H24O(C2H4O)8	590.4	573.35
	9	C15H24O(C2H4O)9	634.5	133.10
	10	C15H24O(C2H4O) 10	678.5	133.00
	11	C15H24O(C2H4O) 11	722.5	133.05
	12	$\mathrm{C} 15 \mathrm{H} 24 \mathrm{O}(\mathrm{C} 2 \mathrm{H} 4 \mathrm{O}) 12$	766.5	133.00
	13	C15H24O(C2H4O) 13	810.6	133.05
	14	C15H24O(C2H4O) 14	854.6	133.00
	15	C15H24O(C2H4O)15	898.6	133.05
	16	C15H24O(C2H4O)16	942.6	132.80
	17	$\mathrm{C} 15 \mathrm{H} 24 \mathrm{O}(\mathrm{C} 2 \mathrm{H} 4 \mathrm{O}) 17$	986.7	89.00
OPEO	3	$\mathrm{C} 14 \mathrm{H} 22 \mathrm{O}(\mathrm{C} 2 \mathrm{H} 4 \mathrm{O}) 3$	356.3	226.70
	4	C14H22O(C2H4O)4	400.3	271.10
	5	C14H22O(C2H4O)5	444.3	427.30
	6	C14H22O(C2H4O)6	488.4	471.30
	7	C14H22O(C2H4O)7	532.4	515.40
	8	$\mathrm{C} 14 \mathrm{H} 22 \mathrm{O}(\mathrm{C} 2 \mathrm{H} 4 \mathrm{O}) 8$	576.4	559.30
	9	C14H22O(C2H4O)9	620.4	133.05
	10	C14H22O(C2H4O)10	664.5	133.10
	11	C14H22O(C2H4O)11	708.5	133.05
	12	$\mathrm{C} 14 \mathrm{H} 22 \mathrm{O}(\mathrm{C} 2 \mathrm{H} 4 \mathrm{O}) 12$	752.5	133.00
	13	C14H22O(C2H4O) 13	796.5	133.05
	14	C14H22O(C2H4O)14	840.6	133.05
	15	C14H22O(C2H4O)15	884.6	89.05
	16	C14H22O(C2H4O)16	928.6	132.95

Table 2 Analytical Condition

LC conditions	
Column	: Shim-pack ${ }^{\text {TM }}$ FC ODS
	($75 \mathrm{mmL} . \times 2.0 \mathrm{~mm}$ I.D., $3 \mu \mathrm{~m}$)
Mobile phase A	: 10 mM Ammonium Acetate - water (pH 3.6)
Mobile phase B	: Acetonitrile
Time program	: $70 \% \mathrm{~B}(0.0 \mathrm{mins}$ to 1.0 mins$) \rightarrow$
	$95 \% \mathrm{~B}(1.01 \mathrm{~min}$ to 5.00 min$) \rightarrow$
	$70 \% \mathrm{~B}(5.01 \mathrm{~min}$ to 7.00 min$)$
Flow rate	: $0.25 \mathrm{~mL} / \mathrm{min}$
Column temp.	: $40{ }^{\circ} \mathrm{C}$
Injection volume	: $5 \mu \mathrm{~L}$
MS conditions (LCMS ${ }^{\text {TM }}$-8045)	
Ionization	: ESI (Positive)
Nebulizing gas flow	$2.0 \mathrm{~L} / \mathrm{min}$
Drying gas flow	: $10.0 \mathrm{~L} / \mathrm{min}$
Heating gas flow	: $10.0 \mathrm{~L} / \mathrm{min}$
Interface temperature	: $300{ }^{\circ} \mathrm{C}$
DL Temperature	: $250{ }^{\circ} \mathrm{C}$
Block Temperature	: $400{ }^{\circ} \mathrm{C}$

Results (APEO)

Fig. 2 shows each MRM Chromatogram of the NPEOs ($\mathrm{n}=3$ to 16) and OPEOs ($n=3$ to 15). Fig. 3 shows each calibration curve. Each compound provides good linearity for the range of 1 to $100 \mathrm{ng} / \mathrm{mL}$.

Fig. 2 MRM Chromatogram of the standards ($50 \mathrm{ng} / \mathrm{mL}$)

Fig. 3 Calibration curves of NPEO and OPEO

LC-MS/MS Analysis (AP)

When Alkylphenol (APs) are performed simultaneous analysis under the condition of APEOs analysis, the sensitivities of APs decrease. Therefore, the modification of the analytical conditions is needed.
Table 3 shows the MRM transitions. These deprotonated ions $[\mathrm{M}-\mathrm{H}]$ were selected as the precursor ions. Table 4 shows the analytical conditions for analysis for APs. As compared to the LC analysis conditions of the APEOs, all the conditions including column are similar except for mobile phase A. Hence, it can allow ease of analysis of APs by simply changing the mobile phase.

Table 3 MRM transition

Name	Abbreviation	Molecular formula	Precursor ion $(\mathrm{m} / \mathrm{z})$	Product ion $(\mathrm{m} / \mathrm{z})$
Nonylphenol	NP	C 15 H 24 O	219.2	133.10
4-n-Nonylphenol	4-n-NP	C 15 H 24 O	219.2	105.95
4-n-Octylphenol	4-n-OP	C 14 H 22 O	205.2	106.00
4-tert-Octylphenol	4-t-OP	C 14 H 22 O	205.2	133.05

Table 4 Analytical Condition
LC conditions

Column

Mobile phase A
Mobile phase B
Time program

Flow rate Column temp. Injection volume

Shim-pack FC ODS
$(75 \mathrm{mmL} . \times 2.0 \mathrm{~mm}$ I.D., $3 \mu \mathrm{~m}$)
Water
Acetonitrile
$50 \% \mathrm{~B}(0.0 \mathrm{mins}$ to 0.50 mins$) \rightarrow$
$95 \% \mathrm{~B}(7.00 \mathrm{~min}$ to 9.00 min$) \rightarrow$
50% B (9.01 min to 11.00 min)
: $0.4 \mathrm{~mL} / \mathrm{min}$
$40^{\circ} \mathrm{C}$
$10 \mu \mathrm{~L}$

MS conditions (LCMS-8045)	
Ionization	$:$ ESI (Positive)
Nebulizing gas flow	$: 2.0 \mathrm{~L} /$ min
Drying gas flow	$: 10.0 \mathrm{~L} / \mathrm{min}$
Heating gas flow	$: 10.0 \mathrm{~L} / \mathrm{min}$
Interface temperature	$: 300^{\circ} \mathrm{C}$
DL Temperature	$: 250^{\circ} \mathrm{C}$
Block Temperature	$: 400^{\circ} \mathrm{C}$

Results (AP)

Fig. 4 shows each MRM chromatogram of APs and Fig. 5 shows the calibration curve for each compound. Each compound provides good linearity for the range of 1 to $100 \mathrm{ng} / \mathrm{mL}$.

Fig. 4 MRM Chromatogram of the standards ($20 \mathrm{ng} / \mathrm{mL}$)

Fig. 5 Calibration curves of NP, 4-n-NP, 4-n-OP and 4-t-OP

Conclusion

The results of 2 APEOs and 4 APs analysis with LCMS-8045 provided good linearity and wide range of 1 to $100 \mathrm{ng} / \mathrm{mL}$.
"LC/MS/MS Method Package for Restricted Chemicals in Textiles" provides several types of methods for not only APs and APEOs, but also PFCs, Azo dyes, and Aromatic Amines.

[^0] they are used with trademark symbol "TM" or "®".

SHIMADZU
Shimadzu Corporation
www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedure.
This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. Shimadzu disclaims any proprietary interest in trademarks and trade names used in this publication other than its own.
See http://www.shimadzu.com/about/trademarks/index.html for details.
The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.

[^0]: References
 J. X. Lee, J. Xing, S. H. Chia and Z. Zhan, ASMS 2018, Poster Session WP 779.

 Shim-pack and LCMS are trademarks of Shimadzu Corporation in Japan and/or other countries.
 OEKO-TEX is a registered trademark of ÖTI-Institut für Ökologie, Technik und Innovation GmbH in the United States and/or other countries.
 Third-party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not

