

Blood Alcohol Determination with the New Teledyne Tekmar Versa Headspace Instrument

Application Note

Introduction

Recently, Teledyne Tekmar released the Versa, their latest innovative headspace instrument. Initially developed for the pharmaceutical industry to provide an economical headspace system for residual solvent analysis, the Versa can provide forensic/toxicology laboratories similar benefits.

Blood alcohol analysis is one of a variety of headspace methods performed in forensic/toxicology laboratories. Large laboratories that routinely perform numerous blood alcohol analyses currently benefit from the Teledyne Tekmar HT3[™] headspace instrument.

The newly released Versa was evaluated to determine its suitability to perform an occasional blood alcohol test. Methanol, acetone, ethanol, isopropanol and acetaldehyde along with n-propanol, a typical internal standard, were tested with the Versa headspace instrument.

Experimental-Instrument Conditions

The Versa headspace instrument was connected to Shimadzu Model GC-2010 GC with FID for this application note. A Phenomenex Zebron ZB-BAC-1 column, 30m x 0.53mm x 3.0µm (Phenomenex Catalog No 7HM-G005-31) was used to perform the quantitation portion of the analysis.

Table 1 displays the Versa parameters for the blood alcohol analysis. Table 2 displays the GC/FID parameters used for the separation of the six blood alcohol components.

GC Versa Headspace Instrument Parameters									
Variable	Value	Variable	Value						
GC Cycle Time	11 min	Pressurize	10.0 psig						
Valve Oven Temp	70°C	Pressurize Time	2.00 min						
Transfer Line Temp	75°C	Pressurize Equil Time	0.25 min						
Platen/Sample Temp	65°C	Loop Fill Pressure	7.0 psig						
Platen Temp Equil Time	0.50 min	Loop Fill Time	2.00 min						
Sample Equil Time	10.00 min	Inject Time	0.50 min						
Mixer	Off								

Table 1:	Versa Loop	Parameters
----------	------------	------------

Shimadzu GC/FID Parameters for Blood Alcohol Analysis								
Column	Phenomenex [®] Zebron ZB-BAC-1, 30m, 0.53mm ID, 3.0µm; Linear Velocity 38cm/sec							
Oven Program	40.0°C, isothermal, 10 minutes							
Inlet:	Split Ratio 5:1, Temperature 140 °C, Helium Carrier Gas, Purge Flow 0.5mL.min							
FID	250°C, Hydrogen Flow - 35.0mL/min, Air Flow -400.0mL/min, Makeup Flow – 30mL/min, Sampling Rate 40msec							

Table 2: Shimadzu 2010 GC/FID Parameters

Sales/Support: 800-874-2004 · Main: 513-229-7000 4736 Socialville Foster Rd., Mason, OH 45040 www.teledynetekmar.com

Standard Sample Preparation

Methanol, acetaldehyde, isopropanol, acetone, and n-propanol were obtained from Sigma-Aldrich. 200proof ethanol was obtained from Decon Laboratories, Inc. An internal standard solution was prepared by adding approximately 620µL of n-propanol into a 1L flask containing 20g of sodium chloride dissolved in deionized water.

An accuracy test mix was prepared by adding approximately 90μ L of acetaldehyde, 175μ L of methanol, 70μ L of acetone, 110μ L of isopropanol and 105μ L of ethanol into a 100mL volumetric flask containing deionized water. A set of 7 accuracy standards were prepared by adding 1mL of the internal standard and 0.5mL of the test mix into 22mL headspace vials. These were capped with Teflon lined septa and sealed. Blanks were prepared by placing 1mL of internal standard and 0.5mL of deionized water into 22mL headspace vials.

A linearity test mix was prepared by adding approximately 370μ L of acetaldehyde, 690μ L of methanol, 270μ L of acetone, 430μ L of isopropanol, and 420μ L of ethanol into a 100mL volumetric flask containing deionized water. A linear standard series was prepared by pipeting 3μ L, 10μ L, 30μ L, 60μ L, 125μ L, 250μ L, and 500μ L into separate 22mL headspace vials containing 1mL of internal standard solution. Water was added to the vials so that the total volume of test mix and water was equal to 1.5mL. These were sealed with Teflon-lined septa and sealed. Table 3 lists the concentrations of the accuracy and linearity standards in g/dL.

	Approximate Standards Concentration g/dL for 0.5mL Sample								
Compound	Accuracy	500µL	250µL	125µL	60µL	30µL	10µL	ЗµL	
Methanol	0.138	0.546	0.273	0.136	0.065	0.033	0.011	0.003	
Acetaldehyde	0.071	0.290	0.145	0.073	0.035	0.017	0.006	0.002	
Ethanol	0.083	0.331	0.166	0.083	0.040	0.020	0.007	0.002	
Isopropanol	0.086	0.338	0.169	0.084	0.041	0.020	0.007	0.002	
Acetone	0.055	0.214	0.107	0.053	0.026	0.013	0.004	0.001	

 Table 3: Accuracy and Linearity Approximate Concentrations in g/dL for the 0.5mL Samples Added to

 1mL of Internal Standard Solution

Results

The Shimadzu GCSolution software was used to measure the peak areas of all solvents from both the accuracy and the linearity study. The peak area data was entered into a Microsoft Excel spreadsheet. The average and the percent relative standard deviations (%RSD) were calculated from the accuracy samples by both external and internal standard methods. N-Propanol was used as the internal standard. This data is presented in Table 4.

The correlation coefficient (r^2) was calculated from the linearity standards by both external and internal standard methods. This data is presented in Table 5.

The chromatogram of the standard is presented in Figure 2.

	Methanol		Acetaldehyde		Ethanol		Isopropanol		Acetone		n-Propanol
Sample	Area	IS	Area	IS	Area	IS	Area	IS	Area	IS	Int Std
1	675725	0.31518	3004372	1.40135	941593	0.43919	2071477	0.96621	2434915	1.13573	2143918
2	670092	0.32373	2942336	1.42150	924437	0.44661	2029247	0.98037	2379069	1.14938	2069880
3	705702	0.32471	3130144	1.44025	979136	0.45052	2154548	0.99136	2530903	1.16453	2173334
4	683987	0.33399	3029362	1.47922	945340	0.46161	2074703	1.01307	2450154	1.19640	2047939
5	692344	0.33999	3116792	1.53056	961454	0.47214	2110877	1.03659	2500489	1.22792	2036367
6	657449	0.32840	2953801	1.47545	922583	0.46084	2028341	1.01318	2380615	1.18914	2001965
7	681411	0.32661	2990310	1.43330	951117	0.45588	2085893	0.99980	2424213	1.16196	2086318
Average	680959	0.32752	3023874	1.45452	946523	0.45526	2079298	1.00008	2442908	1.17501	2079960
%RSD	2.28	2.41	2.45	3.00	2.11	2.39	2.14	2.34	2.33	2.68	2.91

Table 4: Average and %RSD of Methanol, Acetaldehyde, Ethanol, Isopropanol, Acetone and n-Propanol of the 7 Accuracy Standards Calculated by External (Area) and Internal Standard (IS) Methods

	Methanol		Acetaldehyde		Ethanol		Isopropanol		Acetone		n-Propanol
μL Added	Area	IS	Area	IS	Area	IS	Area	IS	Area	IS	Int Std
3	13453	0.00650	51969	0.02512	17944	0.00867	39115	0.01891	53472	0.02585	2068761
10	47334	0.02212	183765	0.08588	63123	0.02950	138389	0.06468	183762	0.08588	2139681
30	139587	0.06675	567645	0.27145	192549	0.09208	422092	0.20185	559034	0.26733	2091150
60	292393	0.13485	1164017	0.53686	398063	0.18359	870323	0.40140	1150372	0.53056	2168207
125	638367	0.29501	2501647	1.15609	864788	0.39965	1882933	0.87017	2485936	1.14883	2163878
250	1367549	0.63057	5185309	2.39093	1833353	0.84535	3956936	1.82453	5195643	2.39569	2168742
500	2582989	1.27666	9583915	4.73691	3426346	1.69349	7293127	3.60467	9582685	4.73630	2023243
r ²	0.9990	0.9996	0.9983	0.9999	0.9987	0.9998	0.9982	0.9998	0.9982	0.9999	2117666 ^A
											2.71 ^B

Table 5: Correlation Coefficient (r²) of the Seven Point Calibration Curve of Methanol, Acetaldehyde,Ethanol, Isopropanol, Acetone Calculated by External (Area) and Internal Standard (IS) Methods.The average^A and the %RSD^B are calculated for the internal standard, n-propanol.

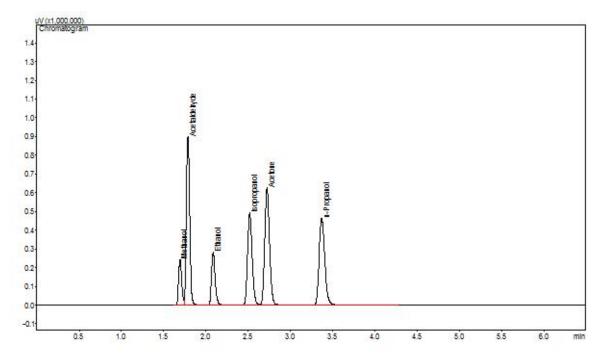


Figure 2: Chromatogram of the Blood Alcohol Standards

Conclusions

The Versa was tested with a typical blood alcohol method to determine the percent relative standard deviation (%RSD) of a set of 7 standards. The %RSD was less than 3% for the six typical blood alcohol solvents calculated by either the external or internal standard method.

A linearity study from 0.002g/dL to 0.33g/dL ethanol provided a correlation coefficient (r^2) greater than 0.999 by either the external or internal standard calculation method. The other solvents had a correlation coefficient (r^2) greater than 0.998 by either the external standard or internal standard calculation method for a similar concentration range.

The Versa provides a forensic/toxicology laboratories a versatile economical headspace instrument which can be used for an occasional blood alcohol analysis by static headspace.