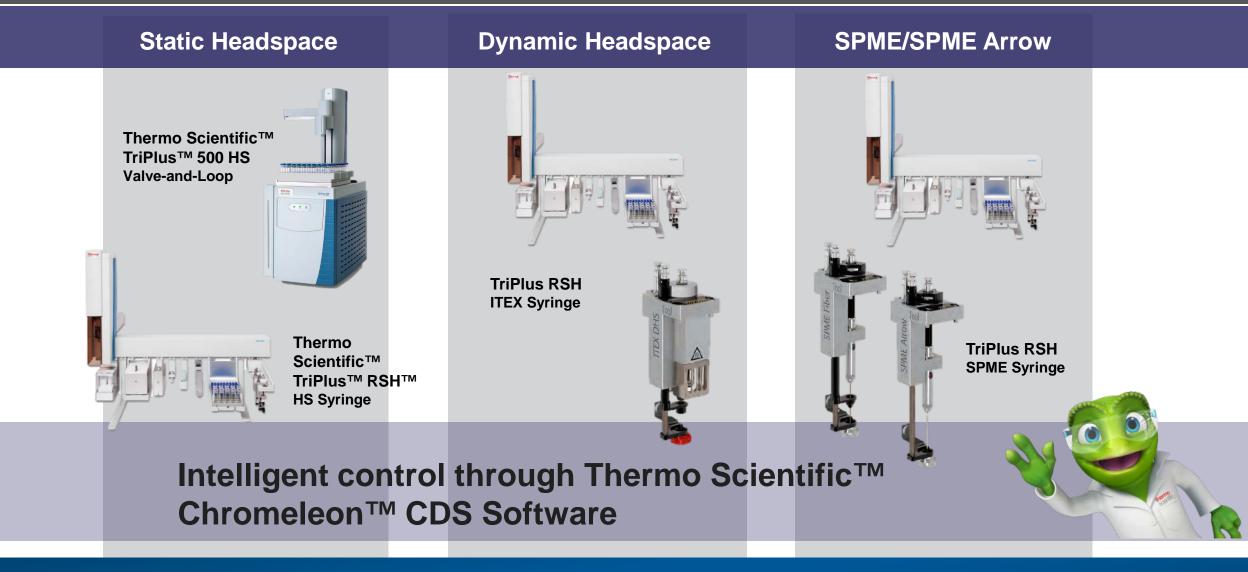
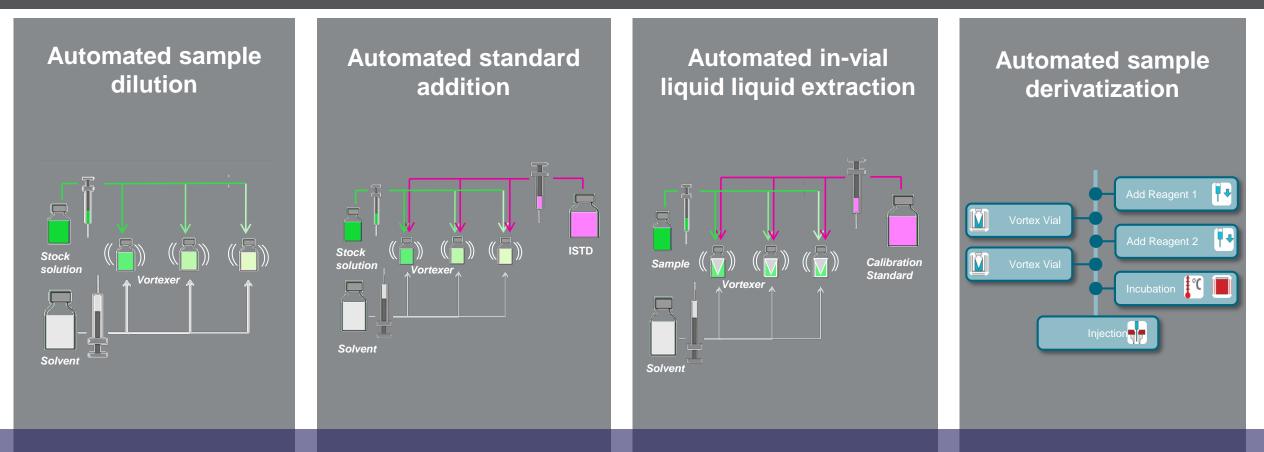

ThermoFisher SCIENTIFIC

Boost Productivity with Reliable GC Sampling Solutions

Daniela Cavagnino Product Marketing Manager GC and Autosamplers


The world leader in serving science

Thermo Scientific GC Sampling Systems


VOC and SVOC GC Analysis – Innovation Serves Productivity

Extended unattended workflows for the routine level operations

Automated Sample Prep and Liquid injection – Innovation serves productivity

Easy visual programming with TriPlus RSH Sampling Workflow Editor SW

Extended unattended workflows for the routine level operations

Thermo Scientific TriPlus 500 GC Headspace Autosampler

- Relieve workload with extended sample throughput
- Maximized uptime through reliable unattended operations

thermo scientific

Facilitate compliance by increased data quality

TRIPLUS 500

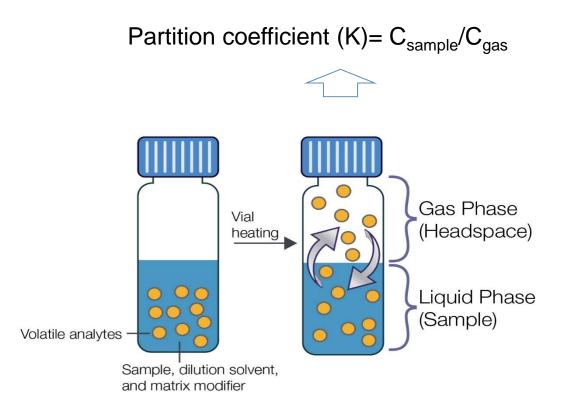
thermo scientific

= = =

TRACE 1310

Why Headspace Analysis

Solventless extraction


• No interference in the chromatograms

Clean injection

• Sample matrix or high boilers stay behind

Volatiles enrichment

• Higher sensitivity than liquid injection

An aliquot of headspace is representative of the concentration of volatile analytes in liquid phase

No sample preparation required for simplified and faster workflows

Thermo Scientific TriPlus 500 GC Headspace Autosampler Connects to Your Needs

What's required to be productive	What We Offer					
Data reliability and robustness	Maximize valuable	Smoother and time-saving validation procedures guaranteed by the best-in-class performance in terms of data repeatability and robustness				
Sample integrity and no carryover	time	Longer unattended workflow delivering high data quality				
Method transfer	Easy method portability	Proven method transfer guarantees streamlined conversion of validated methods				
Reduced bench space	Lab efficiency and	Compact design saves 30% of valuable bench space , with scalable vial capacity and no additional bench space required				
Throughput & low cost/sample	productivity	Safe investment and best cost/value thanks to scalable design to fit any throughput requirement				
Data integrity and regulatory compliance	Compliance and adherence to data quality guidelines	Chromeleon CDS offers tools to assist you through compliance procedures and reporting while assuring full data integrity and traceability				

Integrated and modular HS autosampler for GC and GCMS with best-in-class performance and robustness

Reliable for routine labs as well as versatile for research and method development

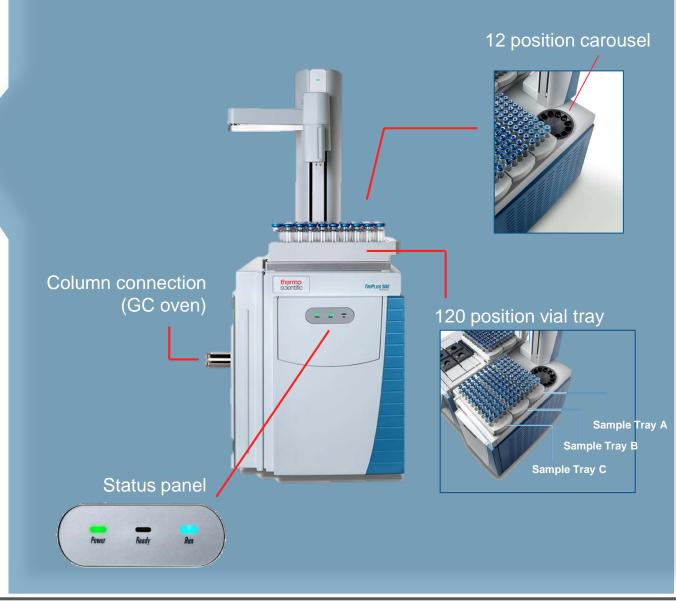
Innovation Serves Productivity

Proprietary pneumatic control

High precision and robustness

Direct GC column interface

Maintained sample integrity



Quick Spin Shaking Shorter incubation time

Scalable compact design

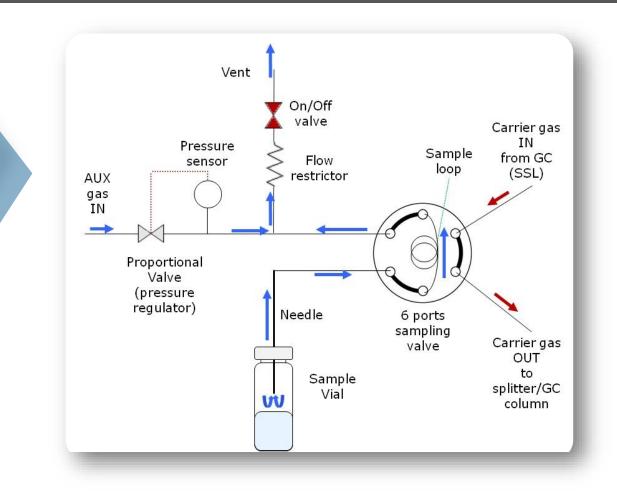
Best cost/value, safe investment

Innovative Pneumatic Circuit Design

Precise control

• Highly repeatable injection

Effective purging

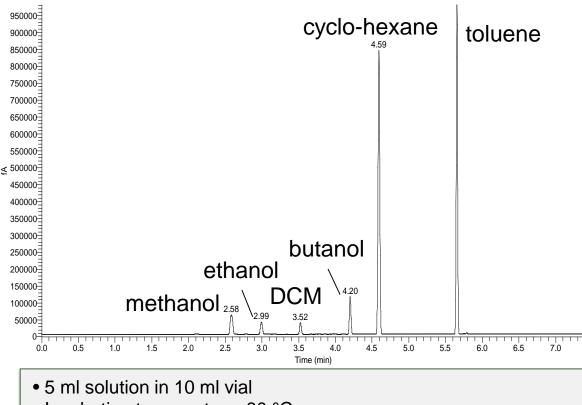

• No carryover

High robustness

• No more contamination issues

Automatic Leak Check

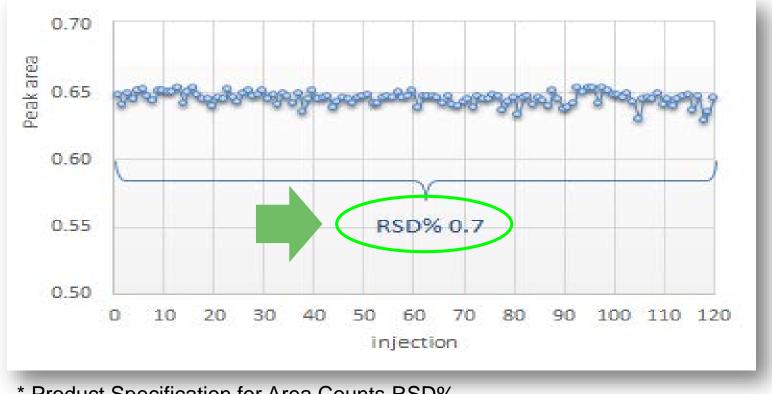
• Only safe runs


Longer sequences with consistent results at each injection

Precise Pressure Control – Injection Repeatability

run	Methanol	Ethanol	Dichloro- methane	Butanol	Cyclo- hexane	Toluene
1	138936	70382	56086	169844	1362065	1310594
2	141791	71645	55634	171800	1336097	1284725
3	139343	70430	56226	169052	1353775	1294590
4	140865	71322	55688	170828	1354501	1286254
5	140649	71089	54844	170304	1329471	1261523
6	139357	70496	55616	169474	1367626	1284129
7	141069 71418		55912	171511	1398847	1293565
8	140782	71277	55665	171020	1399242	1284003
9	139543	70654	55065	169514	1378218	1265579
10	10 139729 70821		55301	170151	1399650	1275951
11	139782 70786		54939	169763	1378460	1262625
12 141144 71582		71582	55846	172081	1418526	1286948
Average	140249	70992	55569	170445	1373040	1282541
SD	905	455	444	991	27491	14352
RSD%	0.6%	0.6%	0.8%	0.6%	2.0%	1.12%

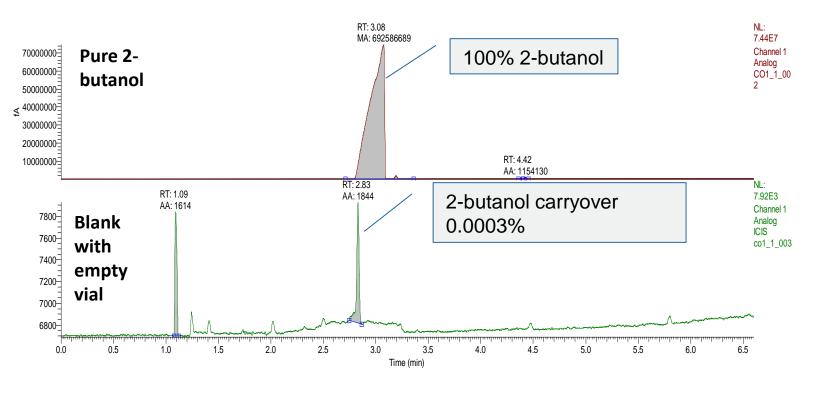
RSD% as good as 0.6% on alcohols obtained on 12 consecutives runs


- Incubation temperature: 80 °C
- Incubation time: 20 min
- GC analysis time: 7.5 min (from 40 °C to 200 °C)
- Column BAC1: 30 m, 0.32 mm, 1.8 μm

Highly reliable data for right-the-first-time analyses

Long Sequence Repeatability

120 consecutive injections of a 50 ppm ethanol solution in water (5 ml in 10 ml crimp top vial) Overall RSD% consistently < 0.8 % *



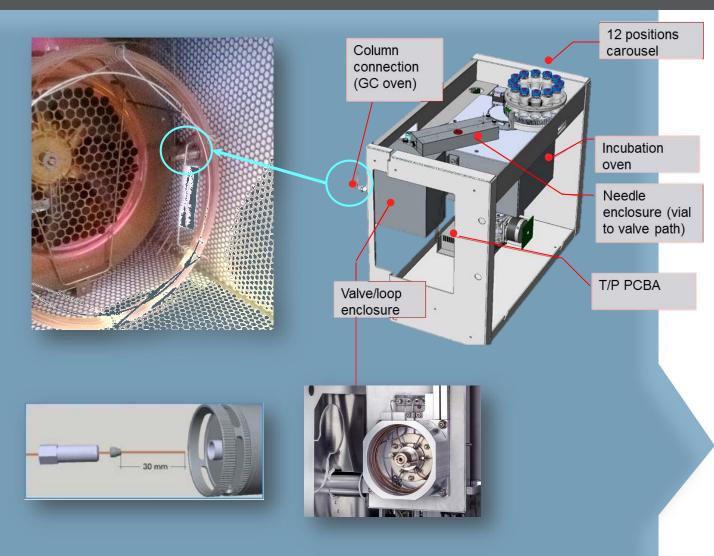
* Product Specification for Area Counts RSD%

Extended routine operations over time

Effective Purging for Reduced Carryover

TriPlus 500 HS	
Pure butanol area (fA/s)	6.93E+08
Blank area (fA/s)	1.84E+03
Measured carryover	0.00027%

20 times lower carryover measured in the same conditions

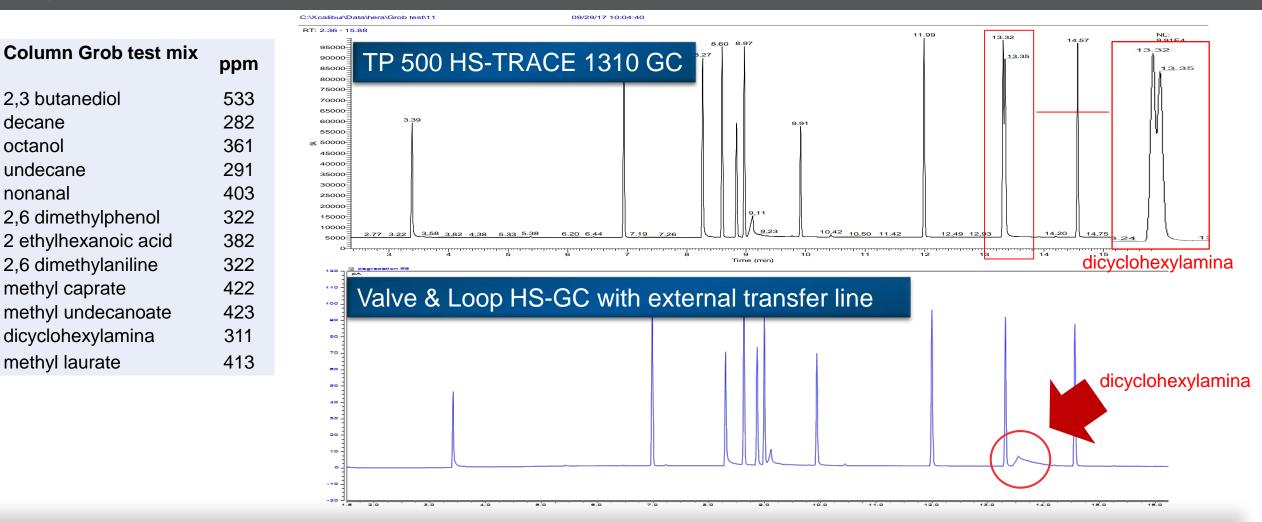


Competitor HS	
Pure butanol area (pA/min)	9.55 E+03
Blank area (pA/min)	6.60 E-01
Measured carryover	0.0069%

Negligible carryover eliminates the need of time consuming blank runs

Direct GC Column Interface

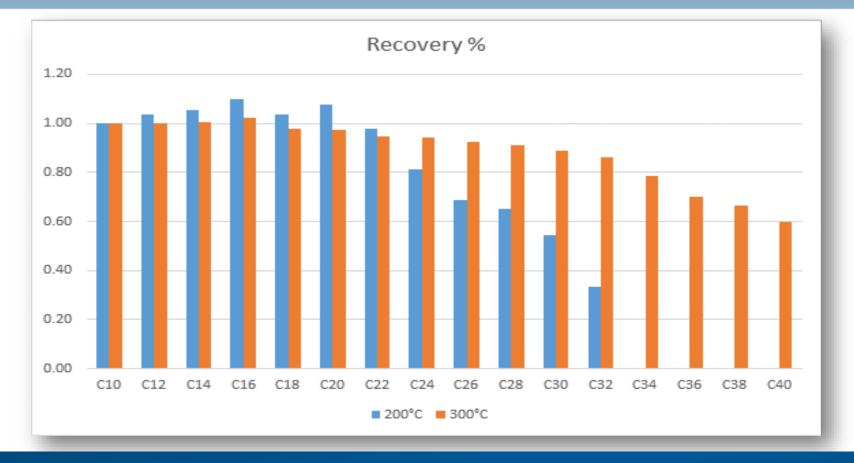
Shorter sample path via direct column connection


High inertness and high recoveries
 Extended applicability

• Temperature setting is not required Simplified method set up

• Controlled split flow capability Flexible sample amount injection

High Inertness – Polar Compounds Test



Short sample path assures the best sample integrity for critical compounds

Recovery - High Boiling Hydrocarbons

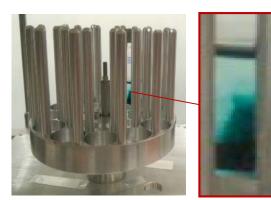
Short sample path assures the best recovery for high boiling point compounds

Expand analytical capabilities by extending the boiling point range

Compact footprint

- Integrated industrial design
- About 30% shorter than HS-GC systems on the market

• High-throughput capability up to 240 vial capacity with no extra space on the bench


Increased laboratory efficiency by saving valuable bench space

Quick Spin Shaking (QSS)

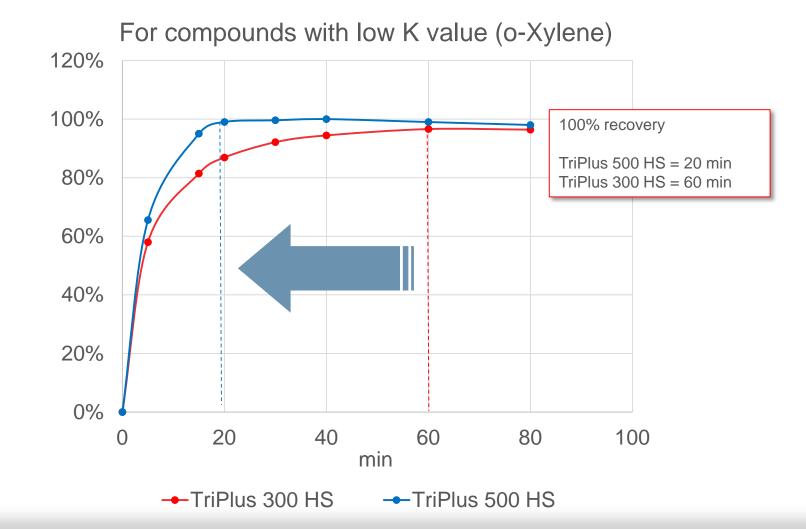
Liquid is pushed against vial walls creating a larger exchange surface area between liquid and gas

Liquid is immediately mixed when rotation is stopped and reverted

Effective vial shaking

FASTER SAMPLE EQUILIBRATION

• 3 levels of agitation to speed up sample equilibration during incubation


EXTRACTION EFFICIENCY

 Highly repeatable headspace concentration through faster equilibration between liquid and gas phase

Maximize sensitivity faster for shorter cycle time

Equilibration Time Gain with Effective Shaking

Save time while assuring the highest sensitivity

Designed to Fit Your Needs

LOW-THROUGHPUT

MEDIUM-THROUGHPUT

HIGH-THROUGHPUT

TriPlus 500 HS 12 vial capacity TriPlus 500 HS with Vial Loader 120 vial capacity

TriPlus 500 HS with Vial Loader 240 vial capacity

Best cost/value with in-field scalability with no compromise on performances

Application Fields

Residual solvents Volatile Extractables & LeachablesSoil MTBE in soilVOCs in beers and winesContent (BAC) Volatiles in biological fluids•Method portability •Best RSD% on the market •Best sample integrity •Regulatory compliance •Chromeleon CDS•Higher sample capacity, extended overlapping and faster sample equilibration •Best cost/value •Reduced bench space•Reliable unattended operations •Throughput scalability •Best cost/value •Reduced bench space•Traceable data, Title 21 CFR Part 11 compliance •Best sample integrity •Best cost/value •Reduced bench space	Pharma USP <467> Desidual columnts	Environmental VOCs in wastewater,	Food and Beverage Food packaging	Forensics/ Toxicology Blood Alcohol
 Nethod portability Best RSD% on the and faster sample and faster sample equilibration Best sample integrity Regulatory compliance Chromeleon CDS Reduced bench space 		soil MTBE in soil	wines Food flavors / off-	
	 Best RSD% on the market Best sample integrity Regulatory compliance 	extended overlapping and faster sample equilibration •Best sample integrity •Best cost/value	operations • Throughput scalability • Best sample integrity • Best cost/value	CFR Part 11 compliance • Best RSD% on the market • Best sample integrity

ThermoFisher SCIENTIFIC

USP <467>

thermoscientific

Routine-grade performance of a new static headspace autosampler for the analysis of residual solvents according to USP <467> method

Authors

Giulia Riccardino1, Paolo Magni?, Stefano Pelagatti², Manuela Bergna², Davide Bressanello², and Cristian Cojocariu'

'Thermo Fisher Scientific, Runcom, UK: ²Thermo Fisher Scientific, Milan, IT

The aim of this work was to evaluate the performance of the new Thermo Scientific" TriPlus" 500 Gas Chromatography Headspace (HS) Autosampler for the determination of residual solvent content in water-soluble and waterinsoluble pharmaceuticals according to the United States Pharmacopeia <467> method (USP).1

Introduction

Goal

Organic solvents are widely used in the synthesis of pharmaceutical products and cannot always be completely removed during the

TECHNICAL NOTE 10679

nplified, cost-effective headspace GC thod for residual solvents analysis in armaceutical products

Goal

USP <467> HS-GC-FID method for residual solvent determination in pharmaceutical products using the Thermo Scientific" TriPlus" 500

ceuticals, valve-and-loop, adspace, HS, gas poraphy, GC, flame detector, FID, TriPlus 500 ce Autosampler

cardino and Cristian

67>, residual solvents,

. Thermo Fisher Scientific,

The aim of this work was to develop a rapid, cost-effective, modified Headspace Autosampler and nitrogen as carrier gas.

Introduction

verified in the pharmaceutical products to ensure patient safety. The United States Pharmacopeia (USP) method <467>1 provides detailed procedures for screening, confirmation and quantitation of residual solvents, including sample preparation and analytical conditions.

Organic solvents are often used in the manufacturing and purification of drug substances but due to their potential toxicity their absence/presence must be

outine-grade quantitative performance of Plus 500 Headspace Autosampler coupled TRACE 1310 GC-FID

Introduction

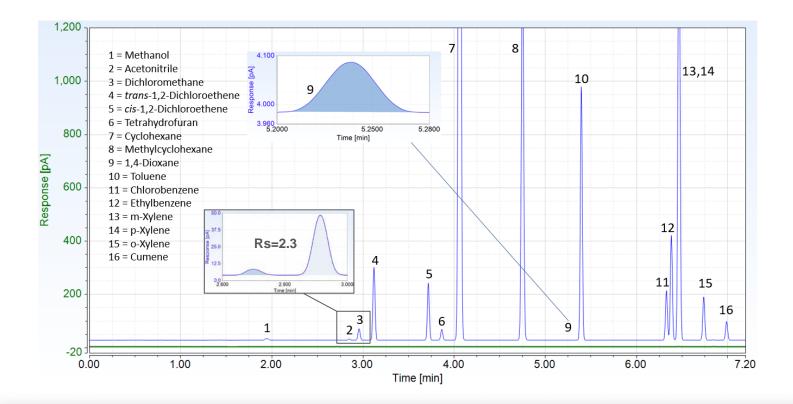
Riccardino and Cristian ariu, Thermo Fisher Scientific, orn, UK.

ermoscientific

fication, linearity, USP residual solvents, aceuticals, headspace, HS, romatography, GC, flame tion detector, FID, method ion limit, MDL, TriPlus 500 ace autosampler, routine-

Testing pharmaceutical products for their potential residual solvents that are used or produced in the manufacture or purification of drug substances is important to ensure patient safety. According to the International Conference on Harmonization (ICH) guidelines,¹ the United States Pharmacopeia (USP) method <467>² describes the assay procedure, classifying and setting solvent concentration limits according to their toxicity and health hazard.

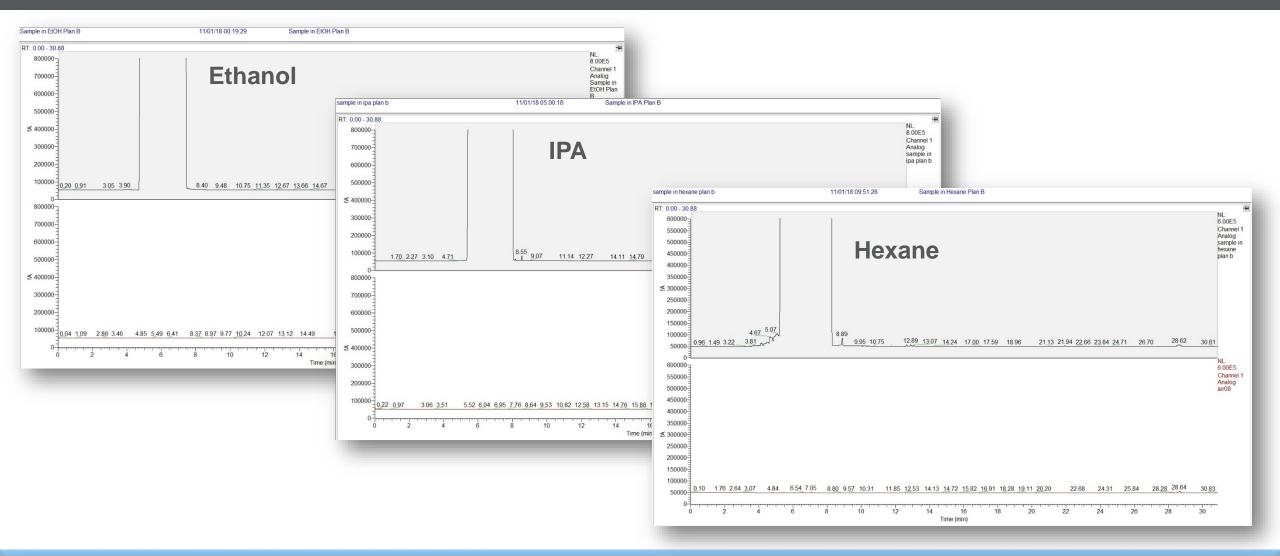
Gas chromatography (GC) coupled to headspace (HS) sampling technique and flame ionization detection (FID) or mass spectrometry (MS) detectors are the analytical methods of choice for this application as most of the target compounds are organic solvents with relatively low boiling points and good thermal stability.


Residual Solvents in Pharmaceuticals

I hermo Fishe SCIENTIFIC

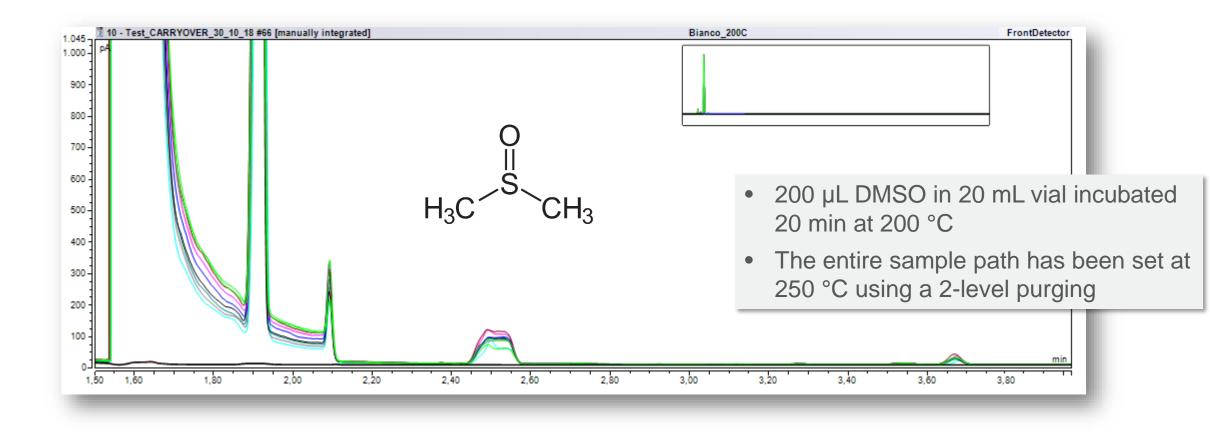
I hermo Fishei SCIENTIFIC SCIENTIFIC

Fast and Cost-Effective USP <467>



Compound name	%RSD (n=12)
Methanol	1.3
Acetonitrile	1.2
Dichloromethane	0.8
trans-1,2-Dichloroethene	1.1
cis-1,2-Dichloroethene	0.9
Tetrahydrofuran	1.0
Cyclohexane	1.8
Methycyclohexane	1.5
1,4-Dioxane	1.3
Toluene	1.0
Chlorobenzene	0.8
Ehylbenzene	1.0
<i>m</i> -Xylene/ <i>p</i> -Xylene	1.0
o-Xylene	0.9
Cumene	1.0
Average %RSD	1.1

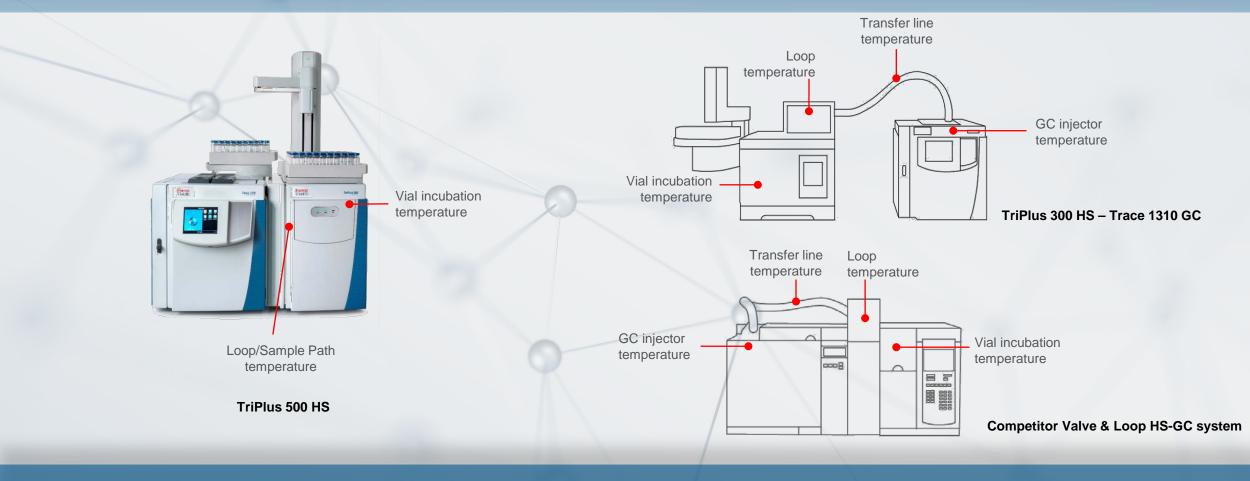
- TG-624 SiIMS GC column shows excellent selectivity
- Accelerated GC conditions can be applied to shorten the overall cycle time
- Nitrogen as carrier gas delivers high separation efficiency with excellent repeatability


Carryover After Pure Solvent Headspace Injection

No measurable carryover in the FID chromatogram of the blank injection

Carryover of High Boiling Solvent

Carryover < 0.0015% after 9 consecutive injections of pure DMSO


Method Portability

HS-GC Method Transfer

Method Transfer Capability

Temperature zones between the TriPlus 500 HS and Valve & Loop Headspace Samplers with external transfer line

Simplified method transfer by reducing settable parameters

Parameters setting from a competitor Valve & Loop HS system with external transfer line to the TriPlus 500 HS

Headspace Parameters	Competitor Valve&Loop HS (*)		TriPlus 500 HS	
Incubation Temperature	85°C	\rightarrow	Same	
Incubation Time	40min	\rightarrow	Same	
Valve/Loop Temperature	85° C	\rightarrow	Same	
Transfer Line	100° C	\rightarrow	-	
Shaking Level	2	\rightarrow	Low	
Vial Fill Mode/Vial Pressure	Default (Flow to Pressure)	\rightarrow	Pressure	
Vial Pressure	103kPa	\rightarrow	Same	
Loop Fill Mode/Loop pressure	Custom	\rightarrow	Pressure	
Loop Pressure	69kPa	\rightarrow	Same	
Vial Pressure Equilibration Time	1min	\rightarrow	Same	
Loop Equilibration Time	0.05min	\rightarrow	Same	
Injection mode	Standard	\rightarrow	Same	
Injection Volume	1mL	\rightarrow	Same	
Injection Time	0.5min	\rightarrow	Same	

(*) Agilent Appl. Note 5990-7625EN (2012)

Straightforward HS parameters setting from an existing method

Method Transfer Capability

				TriPlus 50	0 HS	Competitor Valve & Loop HS (*)
				Area Counts (pA*min)	RSD% (n=20)	RSD% (n=20)
JSP <467> Class 2	V V		Methanol	1.37	1.4	0.6
			Acetonitrile	0.420	2.0	0.5
			Methilene Chloride	5.80	2.0	1.9
⁴⁸ 00- 1. Methanol 2. Acetonitrile	7	13	trans-1,2- dichloroethene	29.7	1.6	2.5
 Methylene Chloride trans-1,2-Dichloroethene cis-1,2-Dicholoroethene 		10	cis-1,2- Dicholoroethene	22.2	1.3	2.1
6. Tetrahydrofuran			THF	5.53	1.4	0.6
 Cyclohexane Methylcyclohexane 			Cyclohexane	492	2.4	2.9
9. 1,4-Dioxane			Methylcyclohexane	158	2.4	3.9
10. Toluene 11. Chlorobenzene		12	1,4-Dioxane	0.200	1.5	0.6
12. Ethylbenzene			Toluene	90.5	1.3	2.0
13. m,p-Xylene 14. o-Xylene			Chlorbenzene	19.7	1.1	2.1
15. Cumene			Ethylbenzene	40.1	1.4	2.2
2		15	m,p-Xylene	168	1.3	2.2
$\frac{1}{2^3}$		9	o-Xylene	17.9	1.2	2.2
0,2 1,0 2,0 3,0 4,0	5.0 6.0 7.0 8.0 Min	0 9.0 10.0 11.0	12.0122 Average RSD%		1.6	1.9

(*) Agilent Appl. Note 5990-7625EN (2012)

Smooth transfer of the operative conditions delivers equivalent or better results

Food & Beverage

thermo scientific

Rapid qualitative and quantitative analysis of residual solvents in food packaging by static headspace coupled to GC-FID/MS

Authors

Giulia Riccardino and Cristian Cojocariu Thermo Fisher Scientific, Runcorn, UK

Keywords

Residual solvents, flexible food packaging, valve and loop, headspace-gas chromatography,

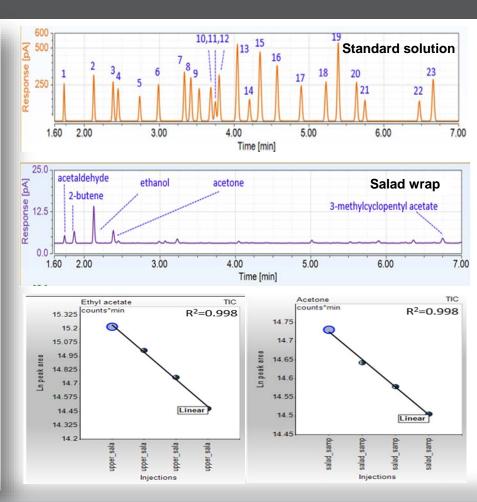
Goal

The aim of this application note is to demonstrate the qualitative and quantitative performance of the Thermo Scientific[™] TriPlus[™] 500 Gas Chromatography Headspace Autosampler coupled to a dual-detector GC-FID/MS for the determination of residual solvents in food packaging according to the European Standard EN 13628-1 method¹ and to highlight a highly efficient workflow through extended automation from sampling to data reporting.

Introduction

Food Packaging

SCIENTIFIC


APPLICATION NOTE 10689

Residual Solvents in Food Packaging

	Component Name
	Methanol
	Ethanol
	Acetone
	2-Propanol
	Methyl acetate
	1-Propanol
	2-Butanone
FID	2-Butanol
	Ethyl acetate
	2-Methyl-1-propano
thermo 150 7000 thermo Soentic Trace 130 thermo Soentic Trace 330	2-Methoxyethanol
	Tetrahydrofuran
	Isopropyl acetate
	1-methoxy-2-propan
	Cyclohexane
	Propylacetate
	4-Methyl-2-pentanon
	Isobutyl acetate
	Toluene
	Butyl acetate
	2-Methoxyethyl aceta

MHE Linearity							
Component Name	RT (min)	Correlation Coefficient (R ²)					
Methanol	1.76	0.997					
Ethanol	2.15	0.997					
Acetone	2.41	0.998					
2-Propanol	2.45	0.999					
Methyl acetate	2.77	0.999					
1-Propanol	3.02	0.998					
2-Butanone	3.36	0.999					
2-Butanol	3.45	1.00					
Ethyl acetate	3.52	0.999					
2-Methyl-1-propanol	3.68	0.999					
2-Methoxyethanol	3.75	0.997					
Tetrahydrofuran	3.83	0.999					
Isopropyl acetate	4.04	0.998					
1-methoxy-2-propanol	4.24	0.997					
Cyclohexane	4.34	0.998					
Propylacetate	4.60	0.999					
4-Methyl-2-pentanone	4.93	0.998					
Isobutyl acetate	5.26	0.999					
Toluene	5.42	0.997					
Butyl acetate	5.74	0.999					
2-Methoxyethyl acetate	5.75	0.997					
2-Etoxyethyl acetate	6.47	0.998					
Cyclohexanone	6.69	0.999					

HS-GC-MS/FID dual-detectors configuration for reliable qualitative and quantitiative analysis

Application

thermo scientific

An automated approach for the determination of gasoline range organics (GRO) in water by gas chromatography coupled with static headspace sampling

Authors

Giulia Riccardino and Cristian Cojocariu Thermo Fisher Scientific, Runcorn, UK

Keywords

Gasoline range organics, GRO, water, valve and loop, headspacegas chromatography, HS-GC,

Introduction

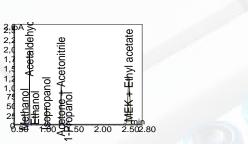
Gasoline range organics (GRO) refer to hydrocarbons with a carbon range from C6 to C10 that have boiling points ranging from 60 °C to 170 °C. These chemicals are often present in the environment, especially in ground water and soil, mainly as a consequence of contamination incidents. The source of contamination can be human errors and accidents (such as oil spills) that occur when handling, storing, or transporting oil and oil products. If GRO are detected, the level of contamination needs to be determined by using quantitative analytical methods. GRO are highly volatile compounds that can be easily extracted from the matrix without the need for time-consuming

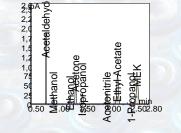
Gasoline Range Organics (GRO) in Water

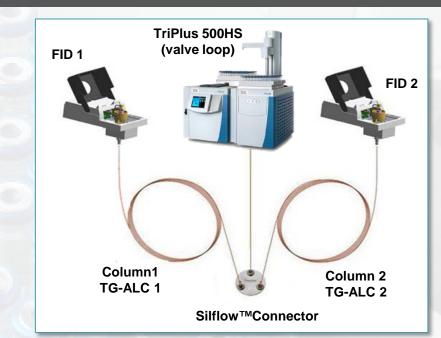
SCIENTIFIC

Gasoline Range Organics (GRO) in Water

7.00		125 R2=1.000		%RSD=4.1			%RSD			
6.00-	total	100	,	*	Gasoline Range Organics	Tap wate with stock (n=:	solution w	Tap water spiked vith raw gasoline (n=10)		
0.00		80	/		Methyl <i>tert</i> -butyl ether (MT	3E) 1.	0	1.0		
₹ 4.00-			/		Benzene	0.9	93	1.2	-	
asu		60 - 2	/		Toluene	0.8	37	1.1		
0 3.00-		40	/		Ethylbenzene	0.7	78	0.8		
2,00					<i>m</i> -Xylene, <i>p</i> -Xylene	0.8	35	1.5		
		20			o-Xylene	0.9	92	1.2		
1.00-		0			1,3,5-Trimethylbenzene	0.9	98	1.2		
0.00	- Hurrison and the second				1,2,4-Trimethylbenzene	0.9	99	1.1		
-0.50	0 2.5 5.0 7.5 10.0 13.0	-21 -1278 0	5000	ug/L 10000 12000	Naphthalene	0.8	32	1.2		
	Time [min]	-12/6 0	Amount	10000 12000	Average	0.9	91	1.1		
7.00 6.00 5.00	- Toluene .p-xylene	Gasoline Range Organics	Average measured concentration (µg/L, n=10)	Average measured concentration (μg/L, n=10)	Gasoline Range Organics	Spiked concentration (µg/L)	Average measured concentratio (µg/L, n=7)	(1) 0 / 1	Calculated LOQ (µg/L)	Average Recovery (%, n=7)
7 4.00-	xytene		2		Methyl <i>tert</i> -butyl ether (MTBE)	12.5	11.5	1.4	4.4	92
Se [p		Methyl tert-butyl ether (MTBE)	7.1		Benzene	12.5	12.8	1.2	3.9	103
a 3.00-	ne Tryter	Benzene	3.7		Toluene	12.5	13.7	1.7	5.5	110
		Toluene	141.2	•	Ethylbenzene	12.5	12.8	1.3	4.0	102
	Excellent linearity	/ and repe	atabilit	y for r	eliable rout	ine qu	Jantita	ation	2.7 2.6	103 100
1.00-	2 cone	m-Xylene, p-Xylene	53.1	52.1	1,3,5-Trimethylbenzene	12.5	14.4	1.7	5.5	100
	MTB6	o-Xylene	53.7		1,2,4-Trimethylbenzene	12.5	13.3	1.7	5.3	107
0.00-	HILL IN ALL IN MILL ALL AND A STREET	1,3,5-Trimethylbenzene	8.0		Naphthalene	12.5	14.6	2.2	7.1	107
0.	0 2.5 5.0 7.5 10.0 13.0 Time [min]	1,2,4-Trimethylbenzene	31.1		Average		13.1	1.4	4.6	105
0.		1,2,4-Trimethylbenzene	31.1		Average	\	13.1	1.4	4.6	10

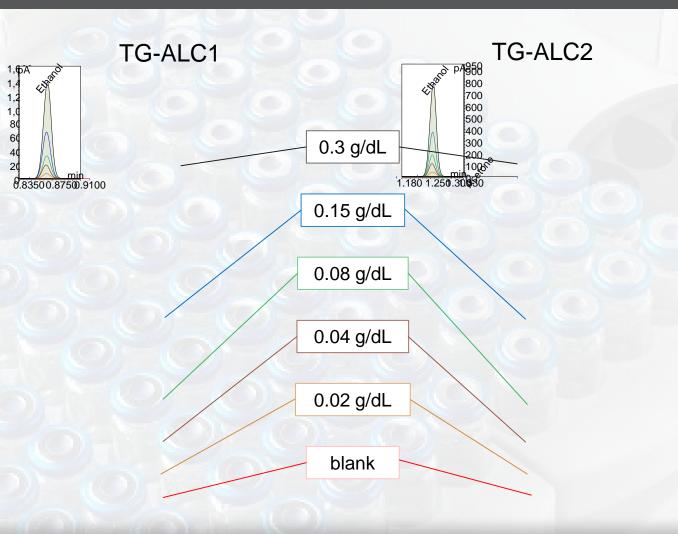

Blood Alcohol




TriPlus 500 HS – Blood Alcohol Concentration (BAC)

Simplicity and affordability for defendable data

- Dual-column dual-FID configuration for ID confirmation
- 1D/2D barcode reader for data tracking and sample management

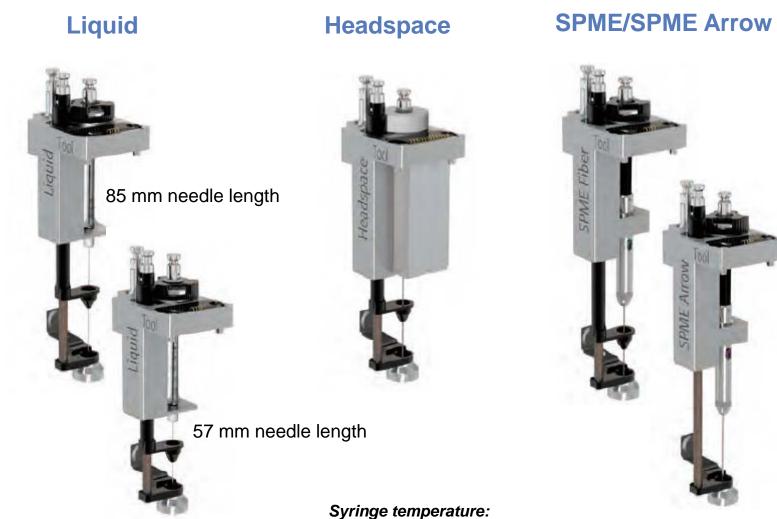

TraceGold TG-ALC1 column

TraceGold TG-ALC2 column

TriPlus 500 HS – Blood Alcohol Concentration (BAC)

- GC run time < 3 min (last peak at 2.6 min)
- Calibration range 0.01 0.2 g/dL
- $R^2 > 0.999$ on the widest conc range
- Ethanol Area Counts repeatability RSD 0.6% (15 replicates, 0.1 g/dL std)
- No Carryover

Defendability and high data quality combined with 24/7 productivity



Thermo Scientific TriPlus RSH Robotic Autosampler

- Relieve workload with high-throughput unattended capability
- Maximized uptime through highly automated workflows
- Facilitate method development with sampling flexibility

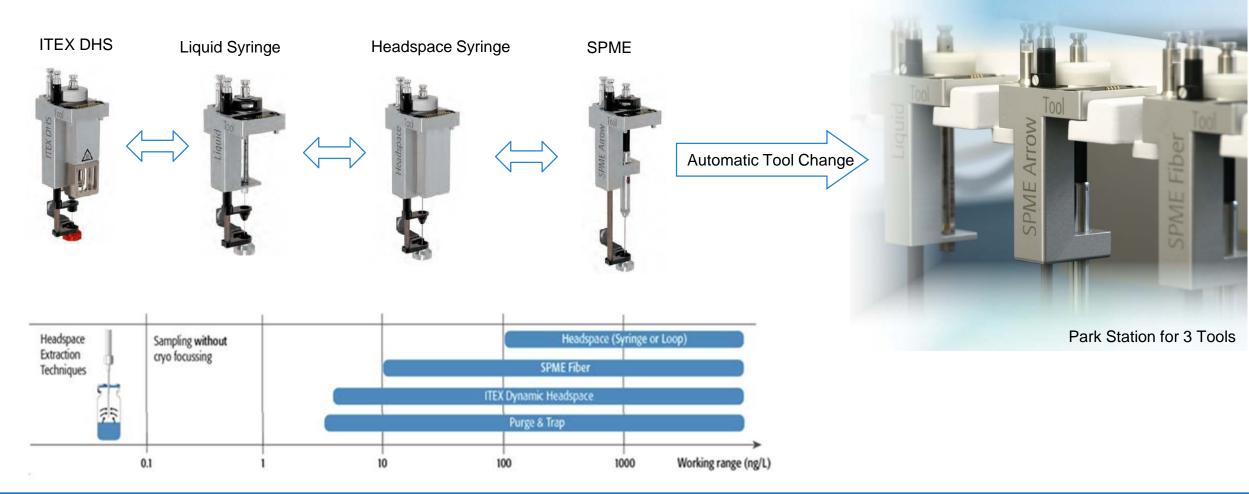
Injection Techniques

Magnetic transportation for 2 ml vials Large magnetic ring for 10/20 ml Vials 40°C up to 150°C, in 1°C steps Syringe flush with inert gas flow through X-Y-Z axis

SPME syringe fiber tool includes a combination of 4 / 5 different fibers for starting-up

ITEX dynamic headspace tool includes a directly heated focusing trap

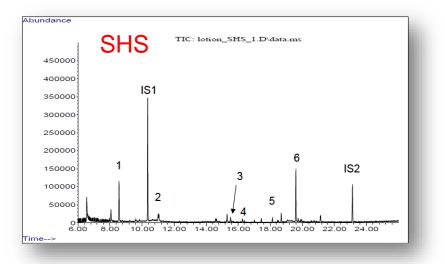
ITEX-DHS


Dilutor

Single Solvent or Multi-solvent (up to 4) capability

Automatic Tool Change (ATC)

Switching of sample injection techniques on the same instrument



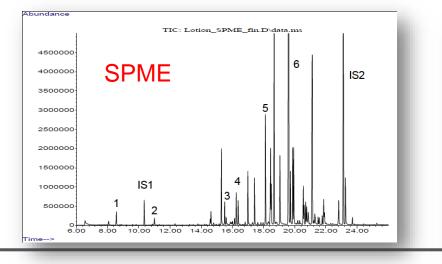
Intelligent automatic switch of sampling techniques to match sensitivity needs

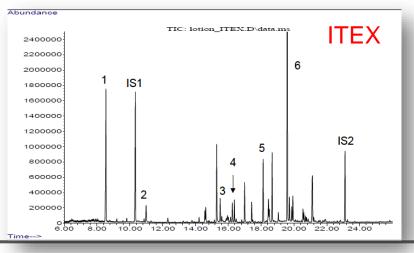
Application of Different Sampling Techniques

Allergens in fragrances

Static HS conditions

Sample Conditioning @ 80°C, 15 min HS needle: 2.5 mL, 90°C Injection: 1 mL; 350 µL/s; 1/10 split ratio


ITEX conditions


Sample Conditioning @ 80°C, 15 min Extraction Strokes: 10 x 1 mL; 50 μ L/s Desorption @ 250°C with 1 mL headspace; 50 μ L/s Trap Material Tenax TA 80/100mesh

SPME conditions

Fiber: 100 µm PDMS Sample Conditioning @ 80°C, 15 min Desorption @ 250°C, 2 min

1. linalool, 2. citronellol, 3. alpha isomethyl ionone, 4. lilial, 5. amyl cinnamaldehyde and 6. hexyl cinnamaldehyde

Clone Mode As Productivity Booster

Dual GC set-up serving **2 DIFFERENT GC or GC/MS using 2 DIFFERENT** sampling methods and/or data systems, exactly as if there were **2 individual TriPlus RSH** autosamplers, thus virtually "cloning" the autosampler

Challenges of Sample Preparation

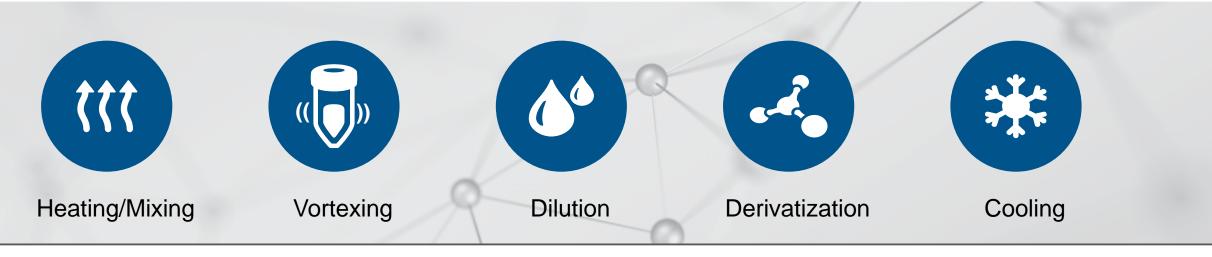
Multiple steps

Time consuming

Source of errors

High costs of consumables

Complex, prone to repeatability and reproducibility issues



Solving Chromatography Challenges through Innovation

TriPlus RSH Autosampler

- Up to 4 different injection techniques interchangeable within the sequence
- Automatic Tool Change for fully unattended operation
- Flexible choice of sample handling devices

Highest Level of Sample Handling Flexibility

- Several tools to reliably automate common sample preparation procedures
- Go beyond standard injection functions with ready-to-use pre-compiled set of basic operations (PrepCycles) available as a default
- Additional dedicated PrepCycles can be developed on-demand by the factory to satisfy specific requirements

Confident sample handling through automated workflow

Workflows Fitting Your Purpose – Current Available

Internal Standard Addition

Calibration Dilution

Sequential Dilution

Batch Derivatization

Sequential Derivatization

Ambient Temp HS

Ambient Temp SPME

Ambient Temp HS – Vacutainer

Labor costs strongly reduced with improved accuracy!

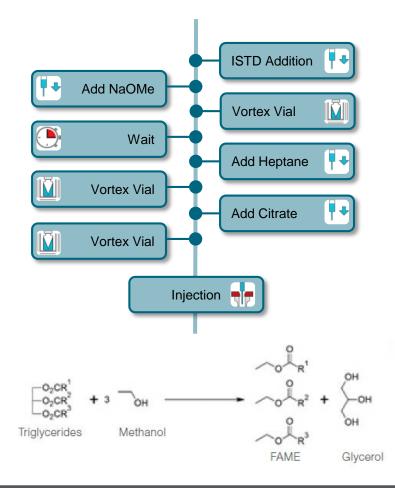
Sampling Workflow Editor Software

- Simple and intuitive user interface
- Access to all commands from a single screen
- Visual programming approach
- Easy control of the TriPlus RSH to automate most common sample handling steps
- Higher precision and reliability of the data for routine workflows avoiding manual operations
- Flexible control to speed up method development

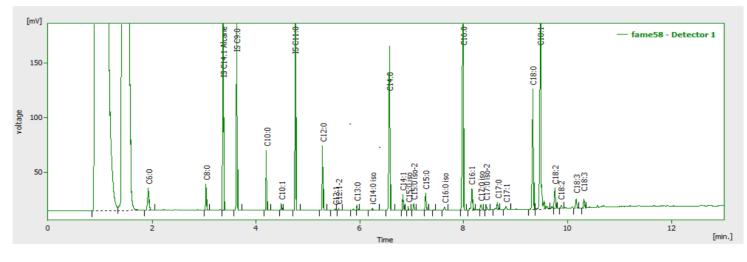
TriPlus RSH Sampling Workflow Editor

thermo scientific

Gain control to create your automated workflows


"DRAG and DROP" to create your own automated workflow

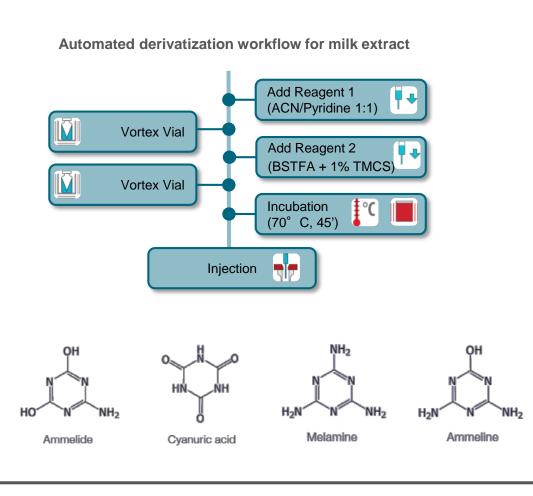
	Views 🗸			<i>i</i> ?,
	₽ × Method 1* ×			▼ Modules ▼ ₽ ×
✓ Control Steps	Description			LS 2
Use Tool				Agitator 1
	v 🗰 Use Tool		×	Agitator 1
Move To Home	Status Message			SPMECondModule1
	Tool IS 2		•	Tray Holder 1
Wait	v 🕂 Get Liquid From Vial		×	Valve Drive 1
	Status Message Get Liquid	From Vial		 Dilutor 1
Repeat	Source Standard		•	 Barcode Reader 1
	Source Index		1 🗢	Vortex Mixer 1
📢))) Beep	Volume		10 µL	▶ 🕂 Fast Wash 1
			More	Standard Wash 1
// Comment				🕨 ഻ Large Wash 1
//	V 🕂 Dispense Liq. Into Vial		×	Solvent Module1
> Cleaning Steps		.iq. Into Vial		MHE Module 1
✓ Liquid Handling Steps	Sample Rack 🗌 Rack 1 (Tr		×	🚏 Injector 1
Get Liquid From Vial	Sample Index 🗹 from samp	ole list		RobotArmLeft
	Volume		10 µL	Park Station 1
Dispense Liq. Into Vial			More	▶ I/O Input Output 1
Dispense Lid. Into Viai	Vortex Vial		×	📌 GC1 👂
Execution Log 🔹	# × Status Message Vortex Via	 I		⊈LC1
	Vortex Mixer Vortex Mi	ixer 1	•	🕂 Input Signal 1
Module Top View Execution Log				Output Signal 1 🛛 🗸
			-	
Steps Panel: list of actions programm	nable	Method Panel: Visualization of the	Modules Panel: dis	splays modules and
according to the configuration		programmed workflow	tools included in the	
- •				-

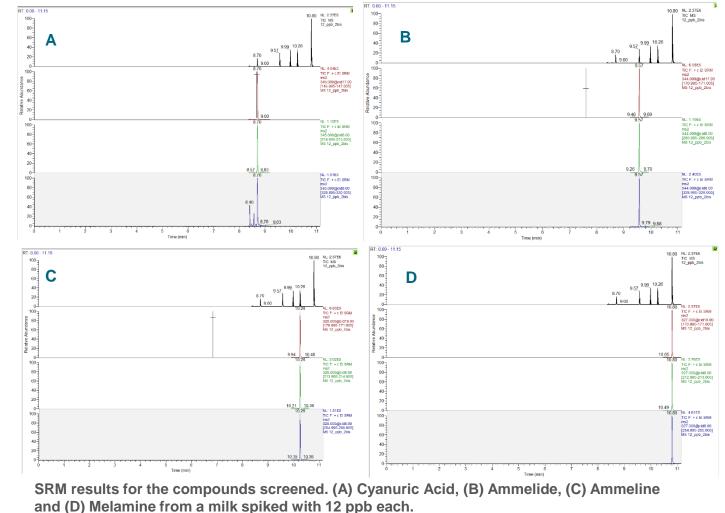


FAME Analysis

Automated derivatization workflow for fatty acids profiling

Typical result of butter FAMEs. Complete GC separation within 11 minutes


Fatty acids % composition of different vegetable oils.


Coconut Oil	%	Peanut Oil	%	Safflower Oil	%	Olive Oil	%	Sunflower Oil	%
C8:0	7.5	C16:0	8.9	C16:0	6	C16:0	12.3	C16:0	4.7
C10:0	5.8	C18:0	3.2	C16:1	0.1	C16:1	0.7	C16:1	0.1
C12:0	45.8	C18:1	68.8	C18:0	2.5	C17:0	0.1	C18:0	1.9
C14:0	18.5	C18:2	16.3	C18:1	17.1	C17:1	0.2	C18:1	13.3
C16:0	9.3	C18:3	0.1	C18:2	73.2	C18:0	2.4	C18:2	57.1
C18:0	2.9	C20:0	1.3	C18:3	0.3	C18:1	74.5	C18:3	0.2
C18:1	8.2	C20:1	1.4	C20:0	0.4	C18:2	8.2	C20:0	0.3
C18:2	21			C20:1	0.2	C18:3	0.8	C20:1	0.2
						C20:0	0.5		
						C20:1	0.4		

Boost Sample Preparation in Food Analysis

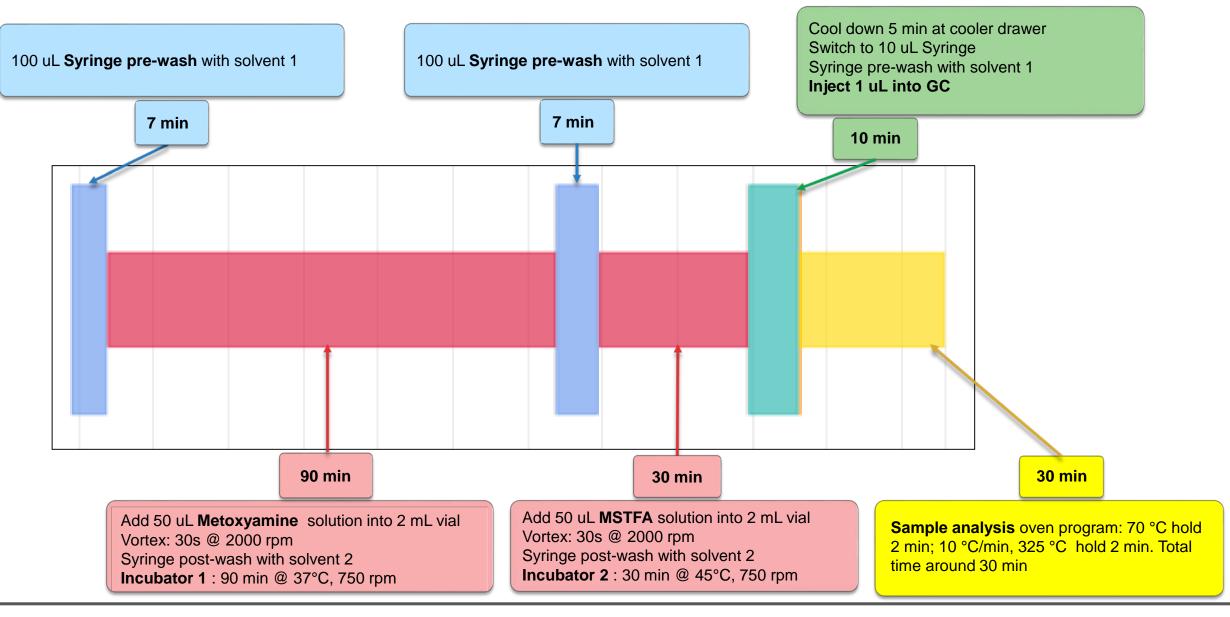
Melamine and its derivatives in dairy products by GC-MS/MS according to U.S. FDA protocol

Thermo Fisher

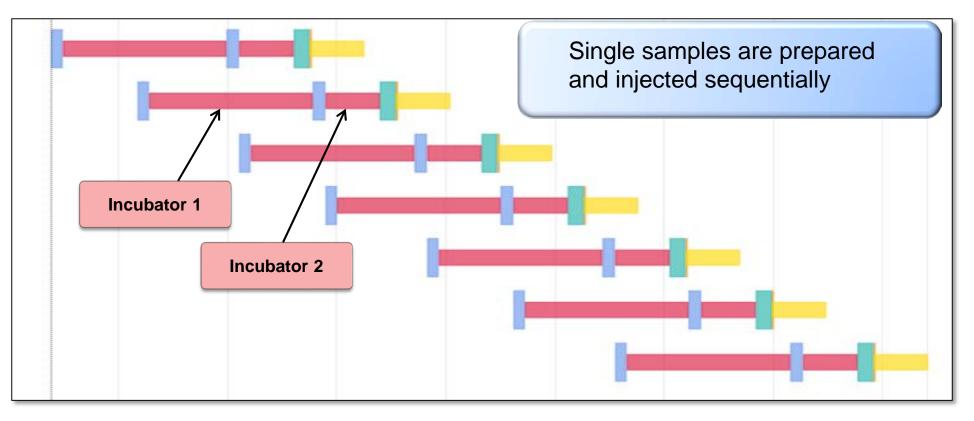
SCIENTIFIC

49

Two steps (Metoxymation/Silylation) online derivatization


10 Methoxyamine N-Methyl-N-(trimethylsilyl) 8 Syringe Pre-Wash (MOX) trifluoroacetamide RSD% 6 (MSTFA) 5 Add MOX 4 3 Vortex Vial M Aspanic and This Livene. ATMS -Vaine 21h5 Augure 2115 (30s @2000rpm) R GWeine.3This roline. 2This unic add 3145 `OH Costine. ATMS oleucine. 21MS nine. 3This L-Laucine. 21145 L-Seine 3THS ine.21145 ine.21thS R₁ Incubation 90' (37° C,90', 750rpm) Syringe Pre-Wash Online vs Manual Derivatization of RSD% Add MSTFA Manual Derivatization 18 Vortex Vial Online Derivatization R^{O-\$i-} 16 (30s @2000rpm) 14 R₁ 12 30' Incubation 2000 H (45° C,30', 750rpm) 8 Cool down in 5 6 Cooled drawer (5') 4 Injection L-Glutamic acid, 3TMS L-Lysine, 4TMS L-Phenylalanine, 2TMS L-Valine, 2TMS L-Proline, 2TMS L-Tyrosine, 3TMS

Automated two-step trimethylsilyl derivatization workflow


ThermoFisher SCIENTIFIC

RSD% of Amino Acids Using Online Derivatization

GC/MS Metabolomics Derivatization Protocol

New Sequential Derivatization

- 24 samples can be prepared and analyzed in 24h
- Two incubators can be used simultaneously
- Minimizes time between derivatization and injection
- Best for labile TMS-metabolites

Environmental contaminants in surface waters

Automated Sample Preparation followed by sensitive GC-MS/MS analysis

- \checkmark Analyze samples in a fast and cost-effective way
- \checkmark Save on solvent cost and minimize sample preparation time
- ✓ No compromise on sensitivity, robustness or quality control

Thermo Scientific **AN 10591** – Automated Sample Preparation followed by sensitive GC-MS/MS analysis for environmental contaminants in surface waters

cost pro sample for these methods

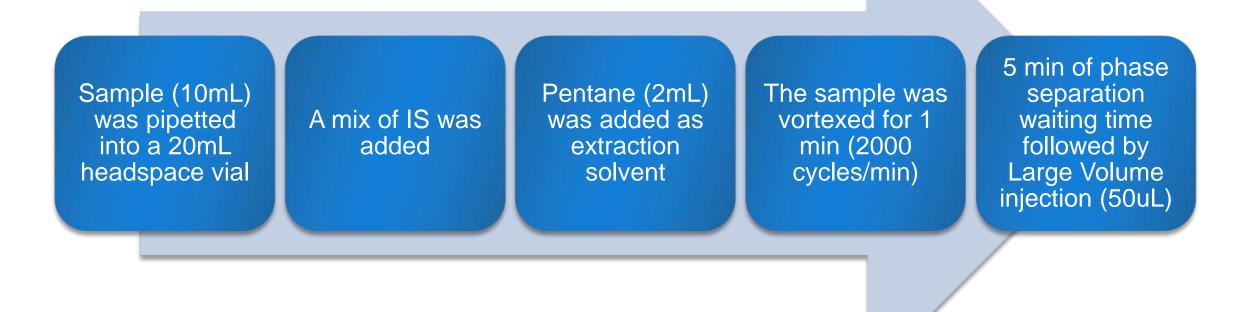
- 2 spe colums
- ~ 700 ml solvent

a lot of

- (big) non-disposable sample bottles
- hours for collecting samples and manual sample preparation
- GC/HPLC systems

don't forget

- waste
- physical loads with sample collection



Fully Automated Sample Preparation

Triplus RSH sample handling procedure was developed by SampleQ[™] (Breda, NL) in collaboration with Het Waterlaboratorium

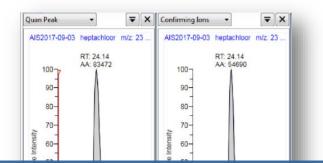
Internal Standard Mixture:

- 2,4 dichlorotoluene
- D10-acenaphtene
- D10-anthracene
- D10-phenanthrene
- D12-benzo (a) pyrene
- D12-chrysene
- D3-PCB101
- D4-DDD
- D8-naphthalene

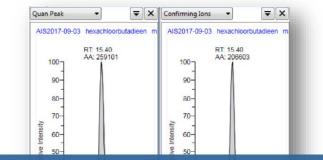
Spiked water samples were used to determine the linearity of 60 compounds of interest:

- Level 1: 5 ng/L water (1.25 pg on column)
- Level 2: 20 ng/L water (5 pg on column)
- Level 3: 100 ng/L water (25 pg on column
- Level 4: 200 ng/L water (50 pg on column
- Level 5: 400 ng/L water (100 pg on column)
- Level 6: 600 ng/L water (150 pg on column)
- Level 7: 800 ng/L water (200 pg on column)
- Level 8: 1000 ng/L water (250 pg on column)

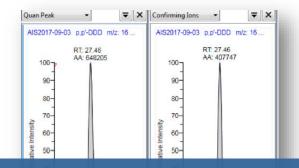
Samples Sequence completed with:

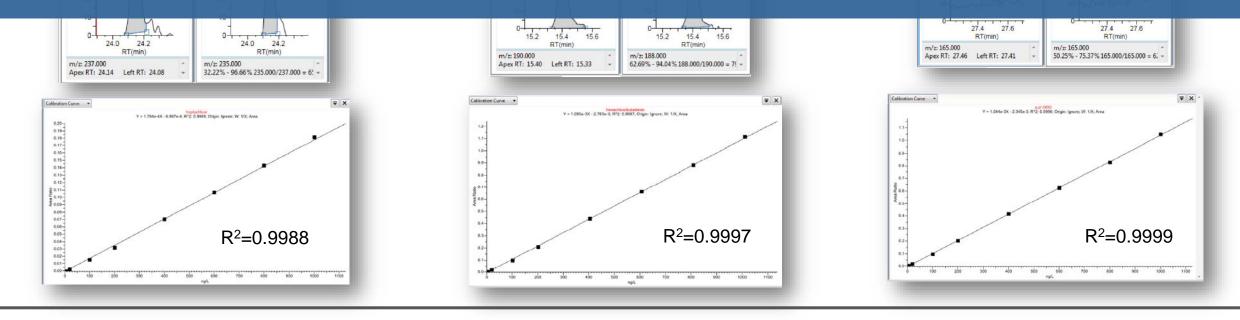

- 10 vials with surface water spiked at 100 ng/L
- 10 vials with surface water spiked at 10 ng/L
- Surface Water Blank
- Quality Control (QC) standard

50 injections to establish linearity, repeatability and instrument detection limits



Linearity in the Range 5 – 1000 ng/L


Heptachlor at the lowest level of 5 ng/L


Hexachlorobutadiene at the lowest level of 5 ng/L

p,p'-DDD at the lowest level of 5 ng/L

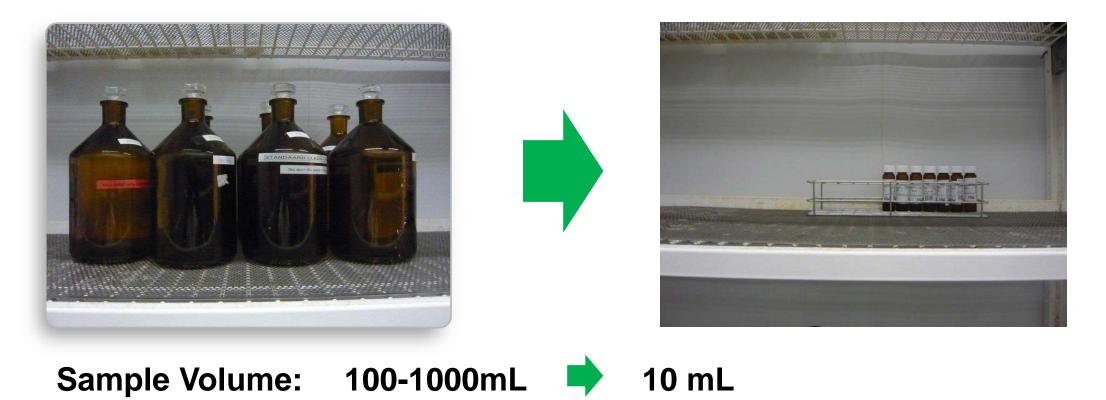
Excellent linearity with $R^2 > 0.997$ for all the 60 compounds

Repeatability and IDL

Compound	%RSD at 100 ng/L	IDL in ng/L	Compound	%RSD at 100 ng/L	IDL in ng/L	Compound	%RSD at 100 ng/L	IDL in ng/L
1,3-dichlorobenzene	0.81	0.68	propyzamide	2.36	3.68	endrin	3.11	5.64
1,4-dichlorobenzene	1.13	0.63	pyrimethanil	1.52	0.97	PCB-118	1.76	0.53
1,2-dichlorobenzene	1.00	0.40	phenanthrene	1.36	2.70	p,p'-DDD	2.09	1.37
hexachloroethane	3.39	1.03	anthracene	1.94	2.53	beta-endosulfan	2.29	4.04
1,3,5-trichlorobenzene	1.07	0.84	PCB-28	0.79	0.51	PCB-138	1.69	0.36
1,2,4-trichlorobenzene	1.51	1.51	alachlor	2.49	2.12	p,p'-DDT	5.56	8.79
naphthalene	0.87	4.55	heptachlor	1.98	1.05	PCB-153	1.18	2.30

Excellent repeatability with average RSD% = 2.2 (10 repeated extractions + injections)

acenaphthylene	1.91	3.25
acenaphthene	0.66	1.22
pentachlorobenzene	1.30	1.20
fluorene	1.41	8.63
diphenylamine	1.45	1.93
alpha-HCH	2.26	1.02
hexachlorobenzene	3.76	0.80
beta-HCH	3.23	1.36
gamma-HCH	3.83	0.91


trans-heptachlor epoxide	5.48	17.84
fluoranthene	1.50	5.16
PCB-101	1.73	0.79
alpha-endosulfan	3.62	3.01
pyrene	3.72	4.14
p,p'-DDE	1.28	0.81
kresoxim-methyl	2.38	1.61
bupirimate	3.13	1.27
dieldrin	3.67	3.49

PCB-180	3.65	0.89
isopyrazam	5.90	1.32
benzo(b)fluoranthene	1.41	4.22
benzo(bk)fluoranthene	2.19	2.98
benzo(k)fluoranthene	2.38	1.25
benzo(a)pyrene	1.56	1.63
indeno(123-cd)pyrene	2.15	1.32
dibenzo(ah)anthracene	1.49	2.61
benzo(ghi)perylene	2.49	1.38

Decreasing sample volume and solvents – logistic & costs

250mL

2 mL

Solvent Volume:

Increase Automation in Front-end Sampling Systems

- Relieve workload with extended sample throughput
- Maximized uptime through reliable unattended operations
- Facilitate compliance by increased data quality
- Speed up method development with automated sample handling flexibility

Innovation serves productivty

QUESTIONS ?

www.thermofisher.com

Please return our survey to receive a drink ticket for our daily networking event where you can continue discussions with our experts!

