

Shimadzu System GC Solutions Guide for Hydrocarbon Processing Industry

Our Reliability and Performance To Help You Stay Productive And Competitive

INTRODUCTION

Shimadzu System GC Solutions proven and commit to meet the demands of your business and industry.

Shimadzu System GC Analyzers reflect stringent industry standards and quality control:

Pre-installation

- Each System GC analyzer is factory pre-configured and pre-tested.
- Field installation and performance verification by our factory trained engineer or certified partner engineer **Post-installation**
- Continuous support by Shimadzu expert consultation and partners to overcome your analytical challenges

For more than six decades, Shimadzu has been building gas chromatography products and remains committed to building the best GC products in the world. Throughout our long history, the customer's needs have always been central to all our design, manufacturing, and testing processes.

As part of this continuing commitment, we developed the system GC solutions for hydrocarbon processing industry (HPI), which provides our customers with the best reliable analytical solution products available anywhere.

From characterization of raw crude and natural gas to monitoring production and quality of refined chemicals and alternative fuels, Shimadzu is committed to provide the most complete GC analyzers portfolio. Shimadzu's HPI GC analyzers are built on reputation of reliable and quality hardware with technical expertise. Our solutions ranges from basic system modification with chemically deactivated material and customized columns in system to quantify trace contaminants in petrochemical streams to a complex multi-valves system for characterization of diverse components in a product.

The following pages will show an overview of Shimadzu's complete HPI GC analyzer solutions which include:

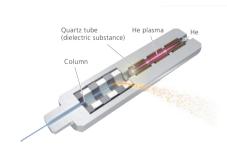
- More than 100 factory tested GC analyzers developed to comply industry standards such as ASTM, GPA, ISO, UOP etc.
- Customized GC analyzers configured and tested to your application's pre-determined specifications.
- Customized instruments and tools designed, delivered and supported by Shimadzu and its partners. Nevertheless when you need pre-configured or customized analyzers, Shimadzu helps you and your team to reduce time spend on application development and improve your productivity.

Table of Contents

Natural Gas	6
Refinery Gas	14
Liquefied Petroleum Gases	22
Trace Gases	24
Trace Sulfur	33
Reformulated Fuel	35
Detailed Hydrocarbons Analysis	42
Simulated Distillation	44
Permanent Gases	46
Town Gas	5(
Greenhouse Gases	53
Transformer Oil Gas	57

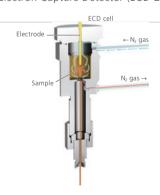
Nexis GC-2030

The Next Industry Standard


Nexis GC-2030, Shimadzu's premier gas chromatograph, offers a modern approach to a classic chromatographic technique. Designed with the user in mind, new innovative features, exceptional performance and high throughput capabilities will elevate your lab to the next level.

Features

High-Sensitivity Detectors Support a Wide Variety of Analyses


Barrier Discharge Ionization Detector (BID-2030)

Flame Ionization Detector (FID-2030)

Electron Capture Detector (ECD-2010 Exceed)

Flame Photometric Detector (FPD-2030)

Intelligent Flow Controller with Exceptional Reproducibility

A new advanced flow controller (AFC) has been developed to include a

It supports carrier gas constant linear velocity control, constant flowrate control, constant pressure control, and various other control modes and achieves exceptionally high reproducibility for ultra-high-speed and ultra-high-precision control modes. Multi-step programs can be created for each control mode as well.

The split line filter can be replaced with hands. Internal contamination can be confirmed visually to ensure filters are replaced at the proper timing.

Results from Analyzing a Grob Test Mix Standard Ten Consecutive Times

	Peak Area Value RSD%	Retention Time RSD%
Decane	0.29	0.005
1-Octanol	0.32	0.004
Undecane	0.28	0.004
2,6-dimetylaniline	0.29	0.003
n-Metyl Nonanoate	0.24	0.003
n-Metyl Decanoate	0.25	0.002
Dicyclohexylamine	0.23	0.003
n-Metyl Laurate	0.27	0.004

Flow Controller (AFC-2030)

GC Systems Customized for Specific Needs

This system is able to analyze components in gas from petroleum refineries.

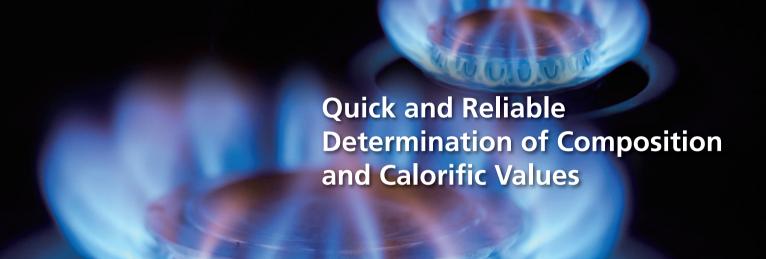
This system is able to calculate calorific values from measurements of natural gas.

Faster Analysis with Hydrogen Carrier Gas

Hydrogen can be a safe and highly effective carrier gas. As a highly efficient carrier gas with a flat Van Deemter curve, it maintains its separation efficiency across a wide linear velocity range. This makes it both a good substitute for Helium and also a great choice for speeding up analysis times. We know safety is paramount, which is why the Nexis GC-2030 offers an optional built-in hydrogen sensor*. It not only maintains a safe standby mode for early detection of any potential leaks, but also shuts off hydrogen flow. The main unit also includes an automatic carrier gas leak check function, which is very helpful when using hydrogen as a carrier gas.

Hydrogen Sensor Monitors Inside the GC Oven

* Optional


Inorganic gas

gases.

analysis system

This system is able to

Natural Gas

Natural gas is a fossil fuel widely used for town gas, electric generation and organic chemicals as feedstock.

Natural gas contains mainly methane and other light hydrocarbons and also contains a small amounts of carbon dioxide, oxygen, nitrogen, hydrogen sulfide, or helium as impurities.

For the trading of natural gas, calorific value and purity are measured. Some of impurities such as hydrogen sulfide must be controlled before using for producing chemicals in next streams in the plant.

Shimadzu natural gas analyzers measure permanent gases and light hydrocarbons from C1 to C5 with C6+ backflush, as well as extended type has function for measuring middle hydrocarbons up to C15. Our factory assembles and tests our GC analyzers for the chemical composition analysis of natural gas and liquid natural gas. System is equipped with software that outputs reports according to ISO, BTU requirements.

Natural Gas Analyzer

Nexis GC-2030NGA1 with Hydrogen / Nexis GC-2030NGA2 without Hydrogen

Analyzer Description

System Configuration:

· 3 valves / 6 packed columns / 2 TCDs

Sample Information:

 $\boldsymbol{\cdot}$ Natural gas or similar gaseous mixture

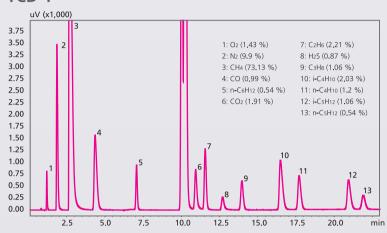
Compounds Analysed:

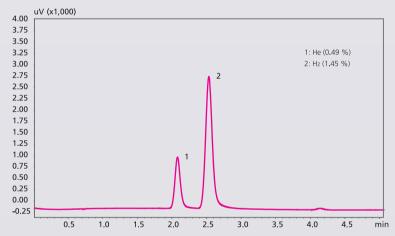
- C1 to C5 (Methane, Ethane, Propane, i-Butane, n-Butane, i-Pentane, n-Pentane)
- · C6+ as Backflush
- He, H₂, O₂, N₂, H₂S, CO, CO₂

Typical Concentration Range:

 0.01 % mol for all components except for H₂S and CH₄, 0.20 % mol for H₂S and 20 % mol for CH₄

Reference Method:


· ASTM D-1945, D-3588 and GPA2261


Features

- · Dual TCD channels
- Dedicated channel for Hydrogen and Helium analysis
- Rugged packed columns
- · 25 mins analysis time
- BTU and Specific Gravity Calorific Calculation software provided as per ASTM D-3588

Typical Chromatogram

TCD-1

Fast Natural Gas Analyzer

Nexis GC-2030FNGA1 with Hydrogen / Nexis GC-2030FNGA2 without Hydrogen

Analyzer Description

System Configuration:

 4 valves / 8 columns (packed and capillary) / 2 TCDs / FID

Sample Information:

· Natural gas or similar gaseous mixture

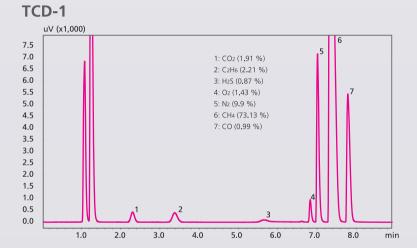
Compounds Analysed:

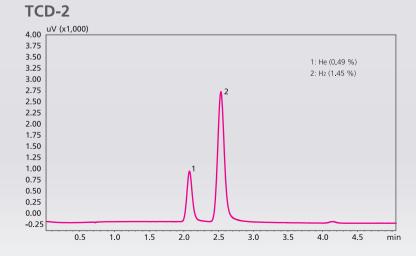
- C1 to C5 (Methane, Ethane, Propane, i-Butane, n-Butane, i-Pentane, n-Pentane)
- · C6+ as Backflush
- He, H₂, O₂, N₂, H₂S, CO, CO₂

Typical Concentration Range:

 0.01% mol for permanent gases and C2 hydrocarbon on TCD, 10 ppm for C3 to C6+ hydrocarbons on FID except for H₂S and CH₄, 0.10% mol for H₂S and 20% mol for CH₄


Reference Method:


· ASTM D-1945, D-3588 and GPA2261


Features

- · Dual TCD channels
- Dedicated channel for Hydrogen and Helium analysis
- FID channel for C3 to C6+ hydrocarbons
- Rugged packed and capillary columns
- · 10 mins analysis time
- BTU calorific calculation software provided

Typical Chromatogram

Extended Natural Gas Analyzer (Single Oven)

Nexis GC-2030ENGA1

Analyzer Description

System Configuration:

 4 valves / 7 columns (packed and capillary) / 2 TCDs / FID

Sample Information:

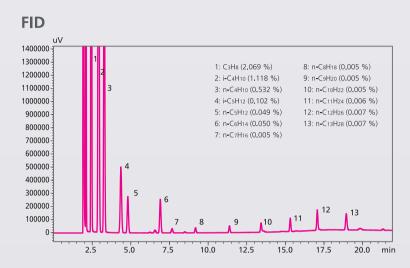
· Natural gas or similar gaseous mixture

Compounds Analysed:

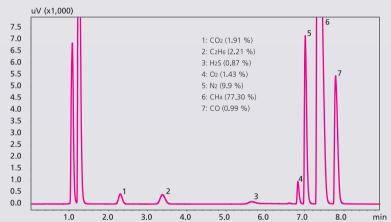
C1 to C14 hydrocarbons
 He, H₂, O₂, N₂, H₂S, CO, CO₂

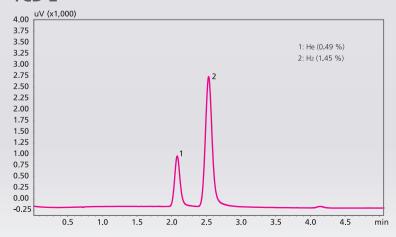
Typical Concentration Range:

 0.01 % mol for permanent gases and C2 hydrocarbon on TCD, 10 ppm for C3 to C13 hydrocarbons on FID except for H₂S and CH₄, 0.10 % mol for H₂S and 20 % mol for methane


Reference Method:

· ASTM D-1945, D-3588 and GPA2286


Features


- · Dual TCD channels
- Dedicated channel for Hydrogen and Helium analysis
- FID channel for C3 to C13 hydrocarbons
- Rugged packed and capillary columns
- · 30 mins analysis time
- BTU Calorific and Specific Gravity Calculation Software provided as per ASTM D-3588

Typical Chromatogram

TCD-1

Extended Natural Gas Analyzer (Dual Oven)

Nexis GC-2030ENGA2

Analyzer Description

System Configuration:

- 4 valves / 7 columns (packed and capillary) / 2 TCDs / FID
- · Dual Oven

Sample Information:

Natural gas or similar gaseous mixture

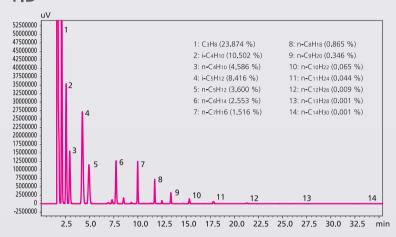
Compounds Analysed:

- · C1 to C14 hydrocarbons
- He, H₂, O₂, N₂, H₂S, CO, CO₂

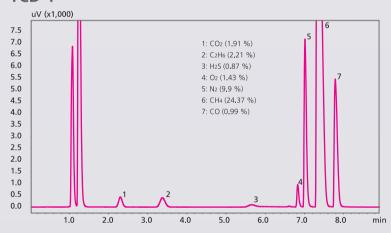
Typical Concentration Range:

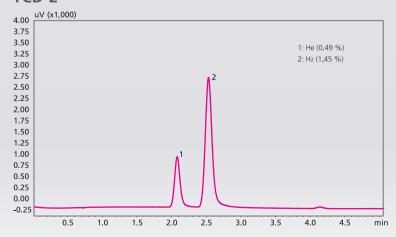
 0.01 % mol for permanent gases and C2 hydrocarbon on TCD, 10 ppm for C3 to C14 hydrocarbons on FID except for H₂S and CH₄, 0.10 % mol for H₂S and 20 % mol for CH₄

Reference Method:


· ASTM D-1945, D-3588 and GPA2286

Features


- · Dual TCD channels
- Dedicated channel for Hydrogen and Helium analysis
- FID channel for C3 to C14 hydrocarbons in 2nd GC oven
- · Rugged packed and capillary columns


Typical Chromatogram

FID

TCD-1

Natural Gas Analyzer (ISO6974-3)

Nexis GC-2030ISO6974-3

Analyzer Description

System Configuration:

2 valves / 3 columns (packed) / 2
 TCDs / FID

Sample Information:

· Natural gas or similar gaseous mixture

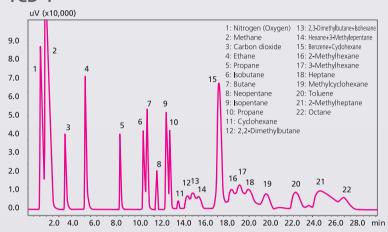
Compounds Analysed:

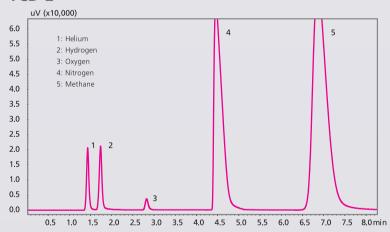
- · C1 to C8 hydrocarbons
- · He, H₂, O₂, N₂, CO₂

Typical Concentration Range:

 0.1 % mol for permanent gases (O₂, N₂, CO₂) on TCD, 1 ppm for C4 to C8 hydrocarbons on FID except for C3, H₂ / He and CH₄, 0.001 % mol for C3, 0.01 % for H₂ / He and 50 % mol for CH₄

Reference Method:


· ISO6974-3, ISO6976


Features

- · Dual TCD channels
- Dedicated channel for Hydrogen and Helium analysis
- FID channel for C4 to C8 hydrocarbons
- · Rugged packed columns
- · 20 mins analysis time
- ISO Calorific and Specific Gravity Calculation Software provided as per ISO6976.

Typical Chromatogram

TCD-1

Natural Gas Analyzer (ISO6974-4)

Nexis GC-2030ISO6974-4

Analyzer Description

System Configuration:

• 1 valve / 2 columns (packed) / TCD

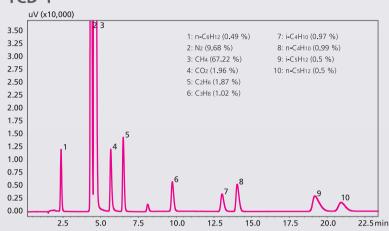
Sample Information:

Natural gas or similar gaseous mixture

Compounds Analysed:

- C1 to C6+ hydrocarbons
- N₂, CO₂

Typical Concentration Range:


 0.001 % mol for permanent gases on TCD, except for CH₄, 75 % mol for CH₄

Reference Method:

· ISO6974-4, ISO6976

Typical Chromatogram

TCD-1

- · Single TCD channel
- Rugged packed columns
- · 22 mins analysis time
- ISO Calorific and Specific Gravity Calculation Software provided as per ISO6976.

BID Ultra-Fast Natural Gas Analyzer

Nexis GC-2030 BIDUFNGA

Analyzer Description

System Configuration:

 3 valves / 6 columns (packed and capillary) / BID / FID

Sample Information:

· Natural gas or similar gaseous mixture

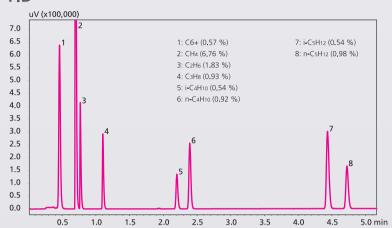
Compounds Analysed:

- C1 to C6+ hydrocarbons
- H₂, O₂, N₂, CO, CO₂, C₂H₆, C₂H₄,
 C₂H₂, H₂S

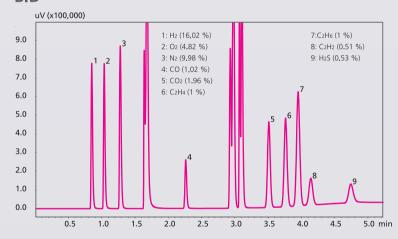
Typical Concentration Range:

 0.001 % mol for permanent gases and C2 hydrocarbons on BID, except for CH₄ and H₂S, 20 % mol for CH₄ and 0.01 % for H₂S

Reference Method:


· ASTM D-1945, D-3588, GPA-2261

Features


- · Single BID channel
- FID for C1 to C6+ hydrocarbons
- Rugged packed and capillary columns
- 5 mins analysis time
- BTU Calorific and Specific Gravity
 Calculation Software provided as per
 D-3588

Typical Chromatogram

FID

BID

Refinery Gas

Refineries distillates crude oil into different fractions and finally produces converts fuels and feedstock for downstream chemical processes such as gasoline, naphtha, fuels, heavy oils, lubricants.

Refinery gases after distillation and cracking process, they are rich in variation that depend on type of processing stage.

Refinery gases contain permanent gases such as oxygen, nitrogen, carbon dioxide and saturated and unsaturated hydrocarbons from C1 to C5.

Refinery gas composition analysis is very complex and high-speed analysis is required for quick feedback to processing control.

Shimadzu refinery gas analyzers measure permanent gases and light hydrocarbons from C1 to C5 with C6+ backflush, as well as high speed type analyzers can give results within only 6 minutes. Our factory assembled and tested our GC analyzer for the chemical composition analysis of refinery gas.

Refinery Gas Analyzer

Nexis GC-2030FRGA1 with Hydrogen / Nexis GC-2030FRGA2 without Hydrogen

Analyzer Description

System Configuration:

 4 valves / 8 columns (packed and capillary) / 2 TCDs / FID

Sample Information:

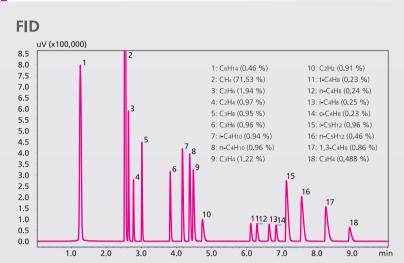
· Refined gas or similar gaseous mixture

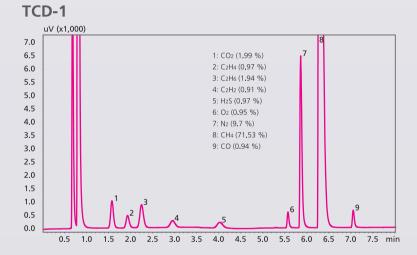
Compounds Analysed:

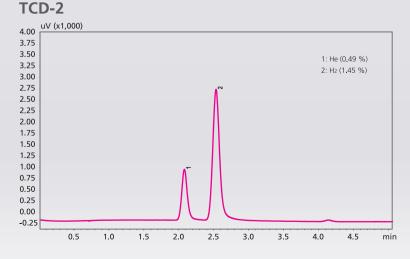
- C1 to C6+ hydrocarbons
- He, H₂, O₂, N₂, CO, CO₂, C₂H₆, C₂H₄, C₂H₂, H₂S

Typical Concentration Range:

- 0.01 % mol for permanent gases and C2 hydrocarbons on TCD, except for H₂S, 0.1 % for H₂S
- 0.001 % for C1 to C6+ hydrocarbons


Reference Method:


 ASTM D-1945, D-1946, D-3588, GPA-2261


Features

- · Dual TCD channels
- Dedicated channel for Hydrogen and Heli-um
- FID for C1 to C6+ hydrocarbons
- · Rugged packed and capillary columns
- · 10 mins analysis time
- BTU Calorific and Specific Gravity
 Calculation Software provided as per
 D-3588

Typical Chromatogram

High Speed Refinery Gas Analyzer

Nexis GC-2030HSRGA1 with Hydrogen / Nexis GC-2030HSRGA2 without Hydrogen

Analyzer Description

System Configuration:

 4 valves / 8 columns (packed and capillary) / 2 TCDs / FID

Sample Information:

· Refined gas or similar gaseous mixture

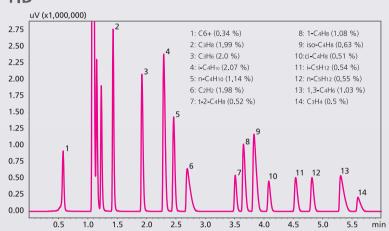
Compounds Analysed:

- C1 to C6+ hydrocarbons
- He, H₂, O₂, N₂, CO, CO₂, C₂H₆, C₂H₄, C₂H₂, H₂S

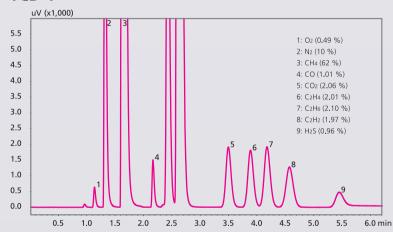
Typical Concentration Range:

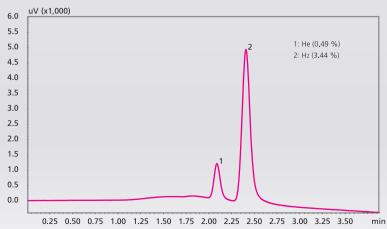
- 0.01% mol for permanent gases and C2 hydrocarbons on TCD, except for H₂S, 0.1% for H₂S
- 0.01% for C1 to C6+ hydrocarbons

Reference Method:


 ASTM D-1946, D-1945, D-3588, GPA-2261

Features


- · Dual TCD channels
- Dedicated channel for Hydrogen and Helium
- FID for C1 to C6+ hydrocarbons
- Rugged packed and capillary columns
- · 6 mins analysis time
- BTU Calorific and Specific Gravity
 Calculation Software provided as per
 D-3588


Typical Chromatogram

FID

TCD-1

Extended Refinery Gas Analyzer

Nexis GC-2030ERGA1 with Hydrogen / Nexis GC-2030ERGA2 without Hydrogen

0.00

Analyzer Description

System Configuration:

- 4 valves / 9 columns (packed and capillary) / 2 TCDs / 2 FIDs
- · Dual Ovens

Sample Information:

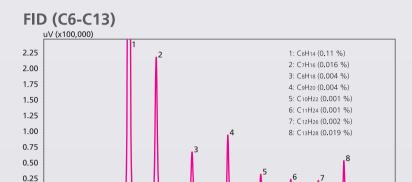
· Refined gas or similar gaseous mixture

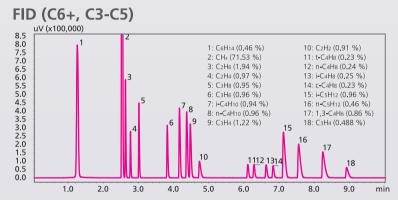
Compounds Analysed:

- · C1 to C14 hydrocarbons
- He, H₂, O₂, N₂, CO, CO₂, C₂H₆, C₂H₄, C₂H₂, H₂S

Typical Concentration Range:

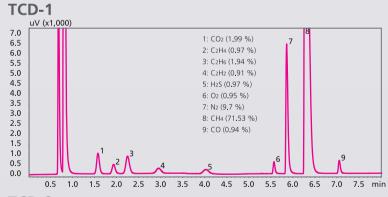
- 0.01 % mol for permanent gases and C2 hydrocarbons on TCD, except for H₂S, 0.1 % for H₂S
- 0.001 % for C3 to C13 hydrocarbons

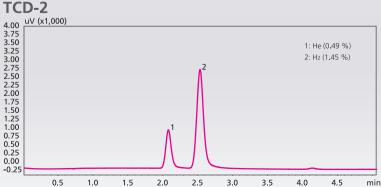

Reference Method:


 ASTM D-1946, D-1945, D-3588, GPA-2286

Features

- · Dual TCD channels
- FID for C3 to C6+ hydrocarbons
- 2nd FID in second oven for C6 to C14 hydrocar-bons
- · Rugged packed and capillary columns
- · 10 mins analysis time
- BTU Calorific and Specific Gravity Calculation


Typical Chromatogram



9.0

10.0

Complete Extended Refinery Gas Analyzer

Nexis GC-2030CERGA1

Analyzer Description

System Configuration:

- 5 valves / 9 columns (packed and capillary) / 2 TCDs / 2 FIDs
- · Dual GC Ovens

Sample Information:

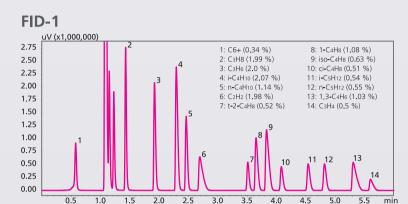
· Refined gas or similar gaseous mixture

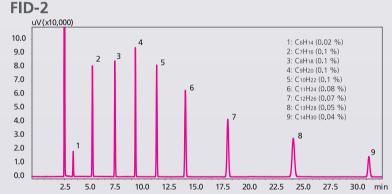
Compounds Analysed:

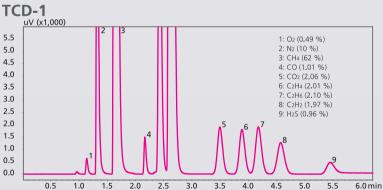
- · C3 to C14 hydrocarbons
- He, H₂, O₂, N₂, CO, CO₂, C₂H₆, C₂H₄,
 C₂H₂, H₂S

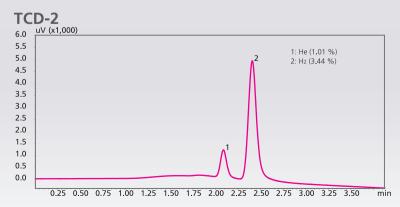
Typical Concentration Range:

- 0.01 % mol for permanent gases and C2 hydrocarbons on TCD, except for H_2S , 0.1 % for H_2S
- 0.001 % for C3 to C14 hydrocarbons


Reference Method:


 ASTM D-1946, D-1945, D-3588, GPA-2286


Features


- Multi sample-type injectors -Vaporizer/ Liquid sampling valve/ Gas sample injection
- · Dual TCD channels
- Dedicated channel for Hydrogen and Helium
- FID for C3 to C6+ hydrocarbons
- 2nd FID for C6 to C14 hydrocarbons in 2nd GC oven
- · Rugged packed and capillary columns
- Dedicated software for switching analytical flow and sample injection for easy-to-use

Typical Chromatogram

BID Ultra-Fast Refinery Gas Analyzer

Nexis GC-2030 BIDUFRGA

Analyzer Description

System Configuration:

 3 valves / 6 columns (packed and capillary) / BID / FID

Sample Information:

· Refined gas or similar gaseous mixture

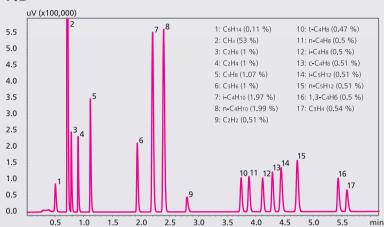
Compounds Analysed:

- C1 to C6+ hydrocarbons
- H₂, O₂, N₂, CO, CO₂, C₂H6, C₂H₄,
 C₂H₂, H₂S

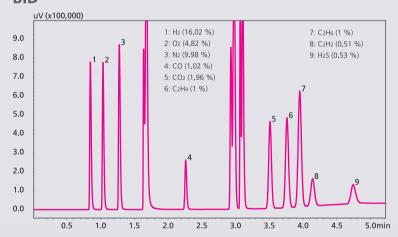
Typical Concentration Range:

- 0.001 % mol for permanent gases and C2 hydrocarbons on TCD, except for H₂S, 0.1 % mol for H₂S
- 0.001 % for C1 to C6+ hydrocarbons

Reference Method:


 ASTM D-1946, D-1945, D-3588, GPA-2261

Features


- · 1 BID channel
- FID for C1 to C6+ hydrocarbons
- Rugged packed and capillary columns
- · 6 mins analysis time
- BTU Calorific and Specific Gravity Calculation Software provided as per D-3588

Typical Chromatogram

BID

BID Extended Refinery Gas Analyzer (Single Oven)

Nexis GC-2030 BIDERGA-S

Analyzer Description

System Configuration:

 4 valves / 7 columns (packed and capillary) / BID / 2 FIDs

Sample Information:

· Refined gas or similar gaseous mixture

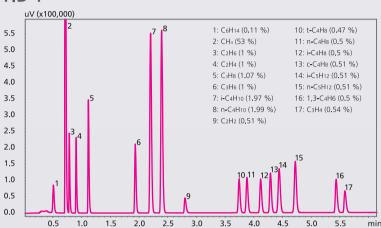
Compounds Analysed:

- C1 to C6+ hydrocarbons
- · C6 to C14 hydrocarbons
- H₂, O₂, N₂, CO, CO₂, C₂H₆, C₂H₄,
 C₂H₂, H₂S

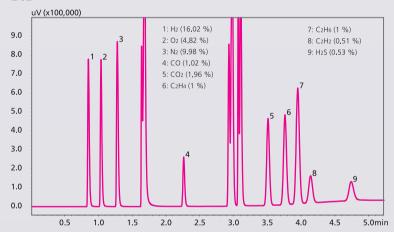
Typical Concentration Range:

- 0.001 % mol for permanent gases and C2 hydrocarbons on TCD, except for H_2S , 0.01 % mol for H_2S
- 0.001 % for C1 to C6+ hydrocarbons
- 0.001 % for C6 to C13 hydrocarbons

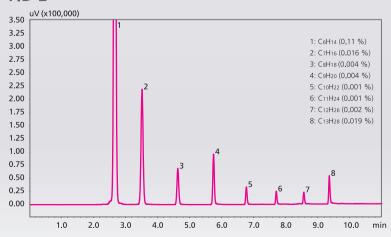
Reference Method:


 ASTM D-1946, D-1945, D-3588, GPA-2286

Features


- · 1 BID channel
- FID for C1 to C6+ hydrocarbons
- 2nd FID for C6 to C13 hydrocarbons
- · Rugged packed and capillary columns
- · 10 mins analysis time

Typical Chromatogram


FID-1

BID

FID-2

BID Extended Refinery Gas Analyzer (Dual Oven)

Nexis GC-2030 BIDERGA-D

Analyzer Description

System Configuration:

 4 valves / 7 columns (packed and capillary) / BID / 2 FIDs

Sample Information:

· Refined gas or similar gaseous mixture

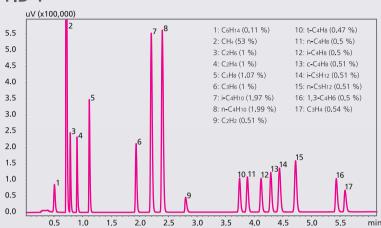
Compounds Analysed:

- C1 to C6+ hydrocarbons
- · C6 to C14 hydrocarbons
- H₂, O₂, N₂, CO, CO₂, C₂H₆, C₂H₄,
 C₂H₂, H₂S

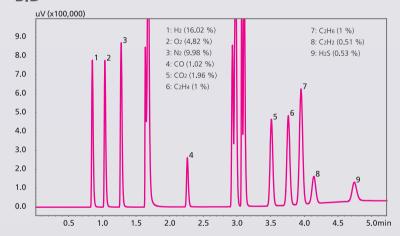
Typical Concentration Range:

- 0.001 % mol for permanent gases and C2 hydrocarbons on TCD, except for H_2S , 0.01 % mol for H_2S
- 0.001 % for C1 to C6+ hydrocarbons
- 0.001 % for C6 to C14 hydrocarbons

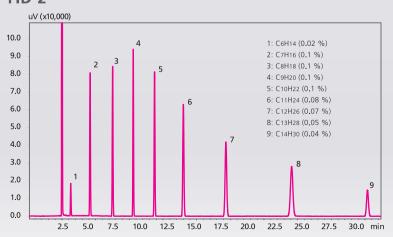
Reference Method:

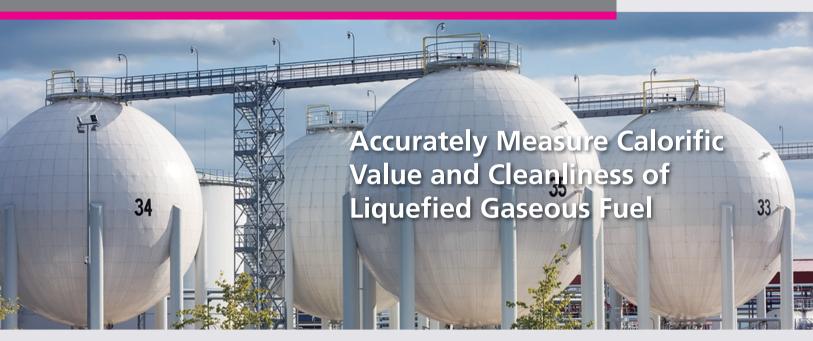

 ASTM D-1946, D-1945, D-3588, GPA-2286

Features


- · 1 BID channel
- FID for C1 to C6+ hydrocarbons
- 2nd FID for C6 to C14 hydrocarbons
- · Rugged packed and capillary columns
- 10 mins analysis time

Typical Chromatogram


FID-1


BID

FID-2

Liquefied Petroleum Gases

LPG is mainly composed of propane and butane which are liquefied and supplied pressurized cylinders more easily than the other fuels. Therefore, it is useful for heating and cooking, industrial use in remote areas.

LPG is mixture of many kinds of resources such as petroleum and natural gases, byproduct of the other chemical processing, etc. It is critical to measure composite and calculate heating value.

Shimadzu LPG analyzers are configured with vaporization apparatus for injectors, and FID/TCD for detectors to comply with customers' requirement. ISO6976/BTU calorific value software outputs in accordance with each industry standard. Both of hardware and software support for complete work.

Hydrocarbons in LPG Analyzer

Nexis GC-2030LPGHC1 with Vaporiser / Nexis GC-2030LPGHC2 with Liquid Sampling Valve

Analyzer Description

System Configuration:

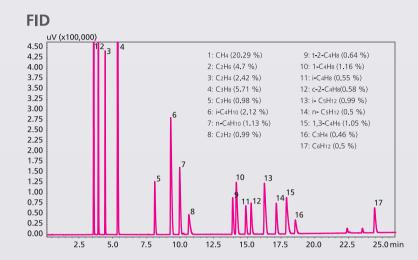
 1 valve / 1 column (capillary) / Split and Splitless injector / FID / Vaporiser

Sample Information:

· Liquefied petroleum gas

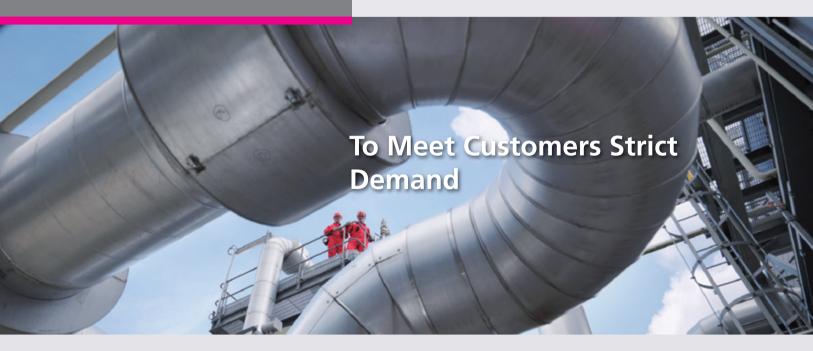
Compounds Analysed:

• Hydrocarbons (C1 to C6)


Typical Concentration Range:

• 0.001 %

Reference Method:


· ASTM D-2163

Typical Chromatogram

- Single channel with Split / Splitless injector, vaporiser or liquid sampling valve for liquefied petroleum gas
- Configured with PLOT Alumina for separation of the C1 to C6 hydrocarbons
- · 30 mins analysis time

Trace Gases

Measuring feedstock impurities at progressively lower concentrations is important for processing control and keeping final product quality at high level. Recently customers and regulators requirements for ethylene, propylene monomer feedstock are increasing. Not only for chemical industries, but also for food and semiconductor industries, purity of feedstock is very critical and may determine customer's final profit. Less contaminants can also keep less damage to equipment and assets for production. For example it can minimize consumption of high price catalyst in the plant.

Shimadzu trace gas analyzers have a wide range line-up to meet a customer's specific reguirements and needs. We can also supply customized-analyzer to you confirm the purity of products. Our factory assembles and tests our GC analyzers for the chemical composition analysis of special gases standard.

Nexis GC-2030CCC1

Analyzer Description

System Configuration:

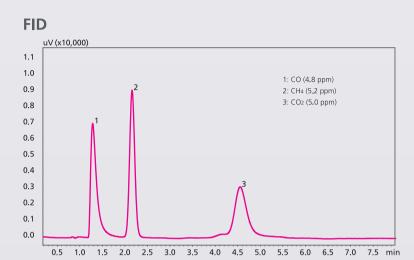
 1 valve / 2 columns (packed) / methanizer FID

Sample Information:

• H₂ or light gaseous hydrocarbons

Compounds Analysed:

· CO₂, CO and CH₄


Typical Concentration Range:

• 1 ppm for CO₂, CO and CH₄

Reference Method:

· UOP 603

Typical Chromatogram

- Single channel with rugged pack column
- Trace detection level of CO₂ and CO analysis by conversion to CH₄ and detect by methanizer FID
- · 8 mins analysis time

Nexis GC-2030CCC2

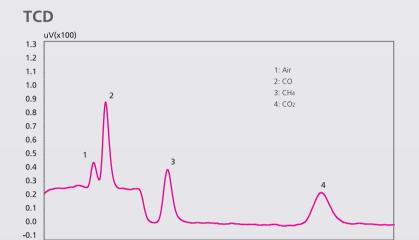
Analyzer Description

System Configuration:

• 1 valve / 2 columns (packed) / TCD

Sample Information:

• Light gas (H₂, O₂, N₂, Ar)


Compounds Analysed:

· CO₂, CO and CH₄

Typical Concentration Range:

• 0.01 % for CO_2 , CO and CH_4

Typical Chromatogram

- Single TCD channel with rugged pack column
- % detection level of CO₂, CH₄ and CO analysis
- 18 mins analysis time

Nexis GC-2030CCC3

Analyzer Description

System Configuration:

 2 valves / 4 columns (packed) / TCD / methanizer FID

Sample Information:

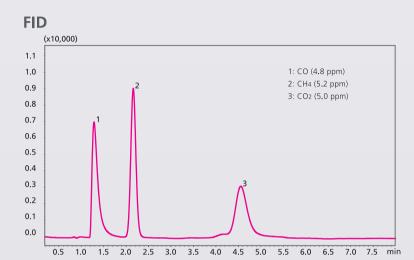
• H₂ or light gaseous hydrocarbons or Light gas (H₂, O₂, N₂, Ar)

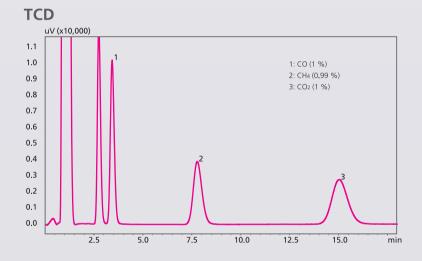
Compounds Analysed:

· CO₂, CO and CH₄

Typical Concentration Range:

- 1 ppm for CO₂, CO and CH₄
- · 0.01% for CO₂, CO and CH₄


Reference Method:


· UOP 603

Features

- Separate channels with rugged pack columns
- % detection level of CO₂, CH₄ and CO analysis
- Trace detection level of CO₂ and CO analysis by conversion to CH₄ and detected by methanizer FID
- · 16 mins analysis time

Typical Chromatogram

Nexis GC-2030CCC4

Analyzer Description

System Configuration:

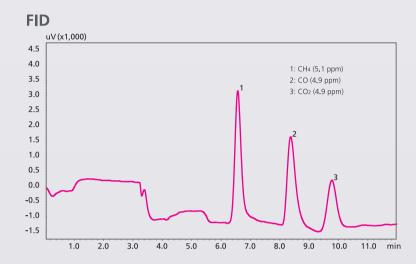
 2 valves / 4 columns (packed) / methanizer FID

Sample Information:

• H₂ or light gaseous hydrocarbons

Compounds Analysed:

· CO₂, CO and CH₄


Typical Concentration Range:

- 1 ppm for CO₂, CO and CH₄
- * O₂ concentration in sample should be 1 % or lower

Reference Method:

· UOP 603

Typical Chromatogram

- Single channel with rugged pack columns
- Trace detection level of CO₂ and CO analysis by conversion to CH₄ and detected by methanizer FID
- · 11 mins analysis time

Nexis GC-2030TCC

Analyzer Description

System Configuration:

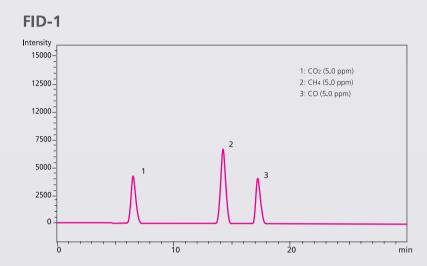
 3 valves / 5 columns (packed) / methanizer FID

Sample Information:

• C2 or light gaseous hydrocarbons

Compounds Analysed:

· CO₂, CO and CH₄


Typical Concentration Range:

• 0.5 ppm for CO₂, CO and CH₄

Reference Method:

· ASTM D-2504

Typical Chromatogram

- Single channel with rugged pack columns with vent valve
- Trace detection level of CO₂ and CO analysis by conversion to CH₄ and detected by methanizer FID
- · 20 mins analysis time

Trace H₂ Analyzer

Nexis GC-2030TH2

Analyzer Description

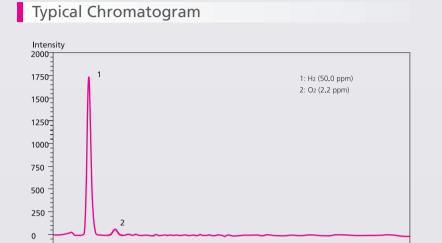
System Configuration:

• 1 valve / 2 columns (packed) / TCD

Sample Information:

 Municipal gas or similar gaseous mixture

Compounds Analysed:


• H₂ and O₂

Typical Concentration Range:

• 50 ppm for permanent gases (H₂)

Reference Method:

· ASTM D-2504

10

15 min

0

- TCD channel
- Trace detection level
- · Rugged packed columns
- 5 mins analysis time

Trace O₂ and N₂ Analyzer

Nexis GC-2030TNO

Analyzer Description

System Configuration:

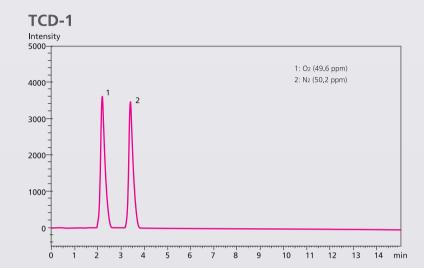
• 1 valve / 2 columns (packed) / TCD

Sample Information:

 Municipal gas or similar gaseous mixture

Compounds Analysed:

• O_2 and N_2


Typical Concentration Range:

• 50 ppm for permanent gases (O_2 and N_2)

Reference Method:

· ASTM D-2504

Typical Chromatogram

- TCD channel
- Trace detection level
- · Rugged packed columns
- 5 mins analysis time

Methane Purity Analyzer

Nexis GC-2030HC2

Analyzer Description

System Configuration:

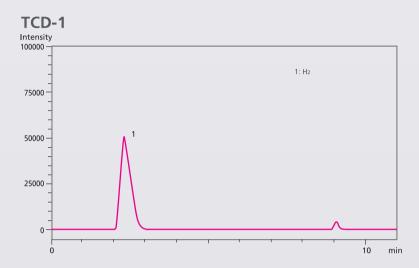
• 3 valves / 6 columns (packed) / 2 TCDs

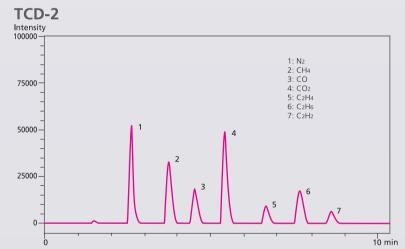
Sample Information:

 Municipal gas or similar gaseous mixture

Compounds Analysed:

 H₂, Ar/O₂ , N₂, CO, CO₂, C₂H₆, C₂H₄, C₂H₂


Typical Concentration Range:


 50 ppm mol for permanent gases (H₂, Ar/O₂, N₂, CH₄, CO, CO₂) and C2 hydrocarbons

Features

- · Dual TCD channels
- · Rugged packed columns
- · 10 mins analysis time

Typical Chromatogram

Trace Sulfur

Sulfurs present naturally in natural gas and crude oil. Controlling sulfur compounds at low level are very strict for keeping fuels and hydrocarbon products quality. Sulfur impurities in fuels also have to be limited under each country regulation. Therefore trace sulfurs analysis is very important.

Trace sulfur contaminants can also contribute to equipment corrosion and reduction of product yields. They can cause catalyst degradation, poisoning and contamination and production down time.

Sulfur oxides (SOx) are harmful to human health and the environment. Emission with sulfurs cause acid rains globally. EPA recently shows regulation to limit presence of sulfur contaminants in hydrocarbon products.

Shimadzu sulfur analyzers measure trace level sulfurs with wealth of experiences. Our factory assembled and tested our GC analyzers for the chemical composition analysis with good quality sulfur standards.

Trace Sulfur Analyzer

Nexis GC-2030SUL1

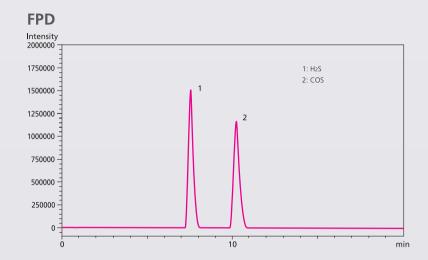
Analyzer Description

System Configuration:

• 1 column (Packed) / FPD

Sample Information:

· Gaseous fuel


Compounds Analysed:

· H₂S, COS

Typical Concentration Range:

• 0.1 ppm for H₂S, COS

Typical Chromatogram

- Can switch between Sulfur or Phosphorous mode for measurement Utilises packed column for gaseous fuel samples.
- · 13 mins analysis time

Reformulated Fuel

Verify through Observance for Environmental Regulations

Reformulated Gasoline is oxygenates deliberately added gasoline for increasing atmosphere cleanness. Environmental regulators have set limitation on volatile organic compounds and other toxic chemicals from exhaust gasses.

Fuel producer have to design fuels for keeping good engine efficiency and performance, and also watch the quality of feedstock such as naphtha and additive oxygenates.

Shimadzu reformulated fuel analyzers measure oxygenates in the gasolines. Our factory assembled and tested our GC analyzers according to ASTM refined methods.

Reformulated Fuel Analyzer - BT

Nexis GC-2030BTA1

Analyzer Description

System Configuration:

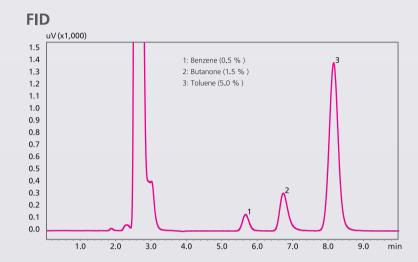
 1 valve / 2 columns (Packed) / WBI Injector / FID

Sample Information:

· Aviation and motor gasoline fuel

Compounds Analysed:

· Benzene, Toluene and Butanone


Typical Concentration Range:

 0.001 % for Benzene and 0.02 % for Toluene

Reference Method:

· ASTM D-3606

Typical Chromatogram

- Single channel configured with dual packed columns to determine benzene and toluene in aviation and motor gasoline fuel
- Independent heating valve system to prevent condensation of sample heavy components.
- 10 mins analysis time

Reformulated Fuel Analyzer - BT

Nexis GC-2030FBTA1

Analyzer Description

System Configuration:

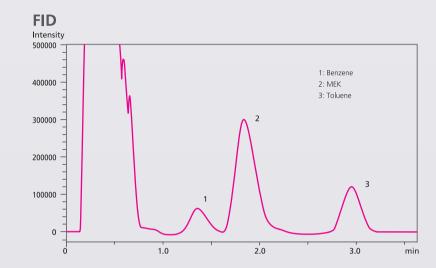
 Flow Switch / 2 columns (capillary) / Split and Splitless Injector / FID

Sample Information:

· Aviation and motor gasoline fuel

Compounds Analysed:

• Benzene, Toluene and MEK


Typical Concentration Range:

• 1 ppm for Benzene and Toluene

Reference Method:

· ASTM D-3606

Typical Chromatogram

- Single channel configured with dual capillary columns to determine benzene and toluene in aviation and motor gasoline fuel
- Flow switch technique to shorten analysis time (4 mins)

Reformulated Fuel Analyzer – Aromatics

Nexis GC-2030ACA1

Analyzer Description

System Configuration:

 1 valve / 2 columns (capillary) / Split and Splitless Injector / FID

Sample Information:

· Aviation and motor gasoline fuel

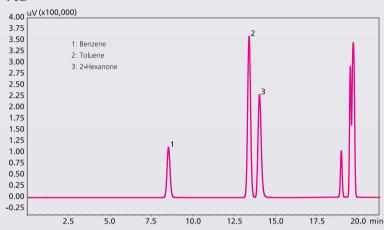
Compounds Analysed:

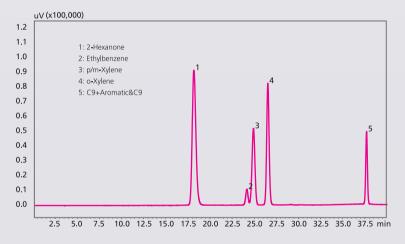
 Benzene, toluene, 2-hexanone, ethylbenzene, xylene, C9 and heavier aromatics, total aromatics

Typical Concentration Range:

• 0.1 % for Benzene, 1 % for Toluene and 0.5 % for C8 aromatics

Reference Method:


· ASTM D-5580


Features

- Single channel configured with dual columns to determine benzene, toluene, ethylbenzene and xylene in finished gasoline fuel
- Configured with newly improved TCEP column to improve method stability
- · 40 mins analysis time

Typical Chromatogram

FID

Reformulated Fuel Analyzer - Oxygenates

Nexis GC-2030OAS

Analyzer Description

System Configuration:

 1 valve / 2 columns (packed and capillary) / Split and Splitless Injector / FID

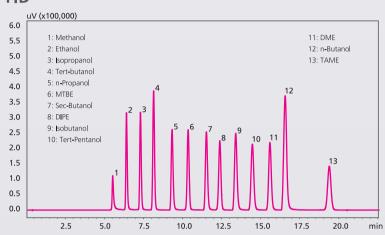
Sample Information:

· Aviation and motor gasoline fuel

Compounds Analysed:

· Ethers and Alcohols

Typical Concentration Range:


• 0.1 % for Ethers and 0.1 % for Alcohols

Reference Method:

· ASTM D-4815

Typical Chromatogram

FID

- Single channel configured with dual columns to determine benzene, toluene, ethylbenzene and xylene in finished gasoline fuel
- Configured with newly improved TCEP column to improve method stability

Oxygenate Analyzer

Nexis GC-2030OAS3

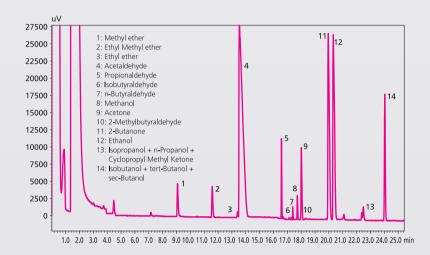
Analyzer Description

System Configuration:

• 2 valves / 2 columns (capillary) / FID

Sample Information:

· LPG or naphtha


Typical Concentration Range:

- Hydrocarbons (C1 to C5 alcohols, C2 to C6 carbonyls/ethers)
- · 1 ppm to 10,000 ppm

Reference Method:

· UOP 960

Typical Chromatogram

- LPG sample is introduced LSV or vaporizer (optional)
- Configured with PLOT LOWOX column for separation of more than 30 kinds of hydrocarbons
- Hydrogen gas sensor for safety use of hydrogen carrier gas

Reformulated Fuel Analyzer - BT / ARO / OXY

Nexis GC-2030 3606-4815-5580-1

Analyzer Description

System Configuration:

 2 valves / 4 columns (packed and capillary) / Split / Splitless and Packed Injector / FID / TCD

Sample Information:

· Aviation and motor gasoline fuel

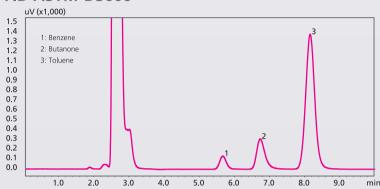
Compounds Analysed:

- · Benzene and Toluene
- · MTBE, Ethers and Alcohols
- Benzene, toluene, 2-hexanone, ethylbenzene, xylene, C9 and heavier aromatics, total aromatics

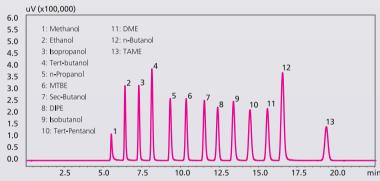
Typical Concentration Range:

- 0.1 % for Benzene and 2 % for Toluene
- 0.1 % for Ethers and Alcohols
- 0.1 % for Benzene, 1 % for Toluene and 0.5 % for Ethylbenzene and Xylene, 5 % for C9 aromatics and 10 % for total aromatics

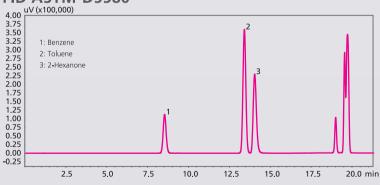
Reference Method:

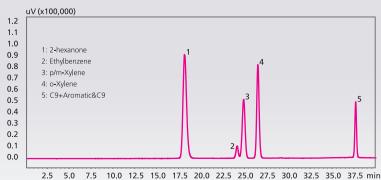

· ASTM D-4815, D-5580, D-3606

Features


- Single channel configured with dual columns to determine benzene, toluene, ethylbenzene and xylene in finished gasoline fuel
- Configured with newly improved TCEP column to improve method stability
- · 40 mins analysis time

Typical Chromatogram


FID ASTM-D3606



FID ASTM-D4815

FID ASTM-D5580

Detailed Hydrocarbons Analysis

The purpose of detailed hydrocarbon analysis (DHA) is to determine the bulk hydrocarbon group type composition (PONA: Paraffins, Olefins, Naphthenes and Aromatics) of gasoline and other spark ignition engine fuels that contain oxygenate blends (Methanol, ethanol, MTBE, ETBE, and TAME).

Nexis GC-2030's intelligent Advance Flow Controller realizes precise linear velocity

control to provide accurate and stable analytical result.

Utilizing Envantage Dragon DHA software TM* , bothering identification work of several hundreds of peaks will become easier. Misidentification will be also prevented thanks to preset database.

^{*} Envantage DHA Dragon software is trademark of Envantage, Inc.

Detailed Hydrocarbons Analyzer

Nexis GC-2030 PONA Series

Analyzer Description

System Configuration:

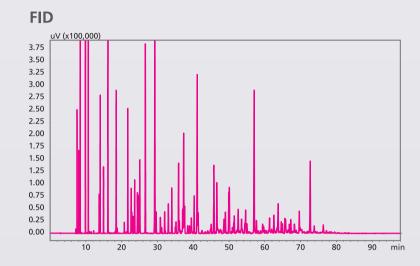
 1 column (capillary) / Split or Splitless injector / FID

Sample Information:

· Spark ignition engine fuels, naphtha

Compounds Analysed:

 Paraffins, Oleffins, Naphthenes, Aromatics


Typical Concentration Range:

• 0.1 %

Reference Method:

· ASTM D-5134, D-6729, D-6730

Typical Chromatogram

- Complies to method ASTM D-5134, D-6729, D-6730
- · Includes Envantage Dragon software
 - · Fast peaks identification and report processing
 - Automatic re-calculation when changes are made
 - · Hydrocarbon group type filtering
 - · Full preview and printing of report
 - Data files are saved as CDF (AIA) format and can be assessed by 3rd party applications that support AIA format file
 - Full reports are stored with results for easy retrieval without reprocessing

- Built In Chemical and Physical Property Calculations:
 - Vapor Pressure
 - Oxygenate Content
 - · Relative Density
 - · Average Molecular Weight
 - · Calculated Research Octane Number
 - · % Carbon, % Hydrogen
 - · Calculated Bromine Number
 - Mass % and Vol % Multi substituted Ring Aromatics

Simulated Distillation

Simulated distillation GC analysis applies a gas chromatograph with a nonpolar column to the boiling-point distribution analysis of petroleum fractions, such as kerosene, diesel oil, lubricating oil, and heavy oil.

The Shimadzu simulated distillation system, employs dedicated on cool column injector (OCI-2030) and LabSolutions simulated distillation GC analysis software, meets all applicable ASTM, ISO, EN, and JIS standards.

Permitting accurate and highly reproducible analysis of high-boiling components in crude oil samples, it is the optimal system for product quality control and process management in oil refinery plants.

Compliance Method	Carbon Number
ASTM D 3710, D -7096	n-C3 to n-C15
JIS K 2254	-
ASTM D -2887 (ISO3924, IP406)	n-C5 to n-C44
ASTM D -6417	n-C8 to n-C60
ASTM D -7213 (Extended D2887)	n-C7 to n-C60
ASTM D -6352	n-C10 to n-C90
ASTM D -7500	n-C7 to n-C100
EN 15199-1 (IP480, DIN)	n-C7 to n-C120
ASTM D -5307	n-C44 Max
ASTM D- 7169, EN 15199-2 (IP 507)	n-C7 to n-C100

Simulated Distillation Analyzer

Nexis GC-2030SDA

Analyzer Description

System Configuration:

 1 column (capillary) / OCI-PTV injector / FID

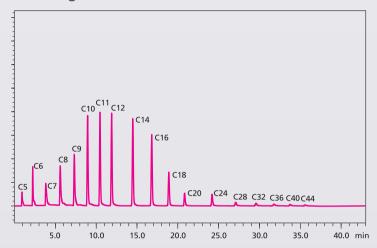
Sample Information:

 Base stock, lube oil, crude oil, petroleum distillate fractions (naphtha, gasoline, diesel, jet fuel, kerosene)

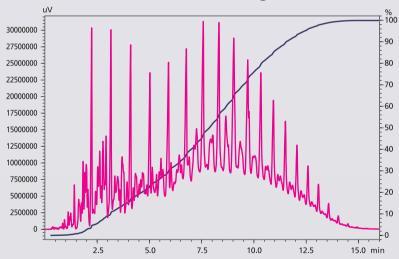
Compounds Analysed:

• Hydrocarbons from n-C3 to n-C120

Typical Concentration Range:


• 0.1 %

Features


- Complies to method ASTM D-3710,
 JIS K 2254, D-2887, D-5307, D-6417,
 D-7213 (Extended D2887), D-6352,
 D-7169, D-7500, EN 15199-1
- 7-steps temperature programmable vaporization injector
- High performance column designed and suited for SIMDIST
- SIMDIST software integrated with LabSolutions
- Easy operation with multi-reporting option

Typical Chromatogram

Chromatogram of Calibration Mix Standard

Sample Analysis of ASTM-D2887 Light Oil (Distillation Curve and Chromatogram)

Permanent Gases

Permanent gases such as oxygen, nitrogen, and carbon dioxide are contained in air. Those are utilized in various kinds of manufacturing for such as refinery, fuel cell, fertilizer, etc. In recycling blast furnace gas in steel field, gas chromatograph is useful for monitoring the gas composition.

Shimadzu can offer various kinds of permanent gases analyzers. He, H_2 , O_2 , N_2 , CO, CO_2 , CH_4 and C2 can be analyzed simultaneously with a single system.

Permanent Gases Analyzer - CO / CO₂

Nexis GC-2030PCC1

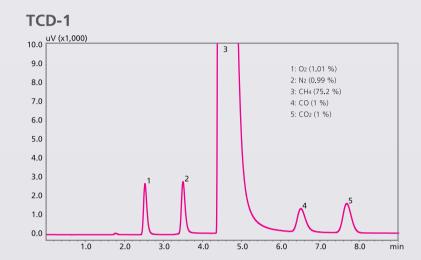
Analyzer Description

System Configuration:

• 2 valves / 4 columns (packed) / TCD

Sample Information:

· Permanent gases


Compounds Analysed:

 Permanent gases (O₂, N₂, CH₄, CO and CO₂)

Typical Concentration Range:

0.01 % (O₂, N₂), 0.01 % (CO₂, CO),
 0.01 % (CH₄)

Typical Chromatogram

- Single channel TCD with rugged packed columns
- Backflush of water and C2 + heavier hydrocarbons
- Configured for analysis of various gas mixture with similar composition
- 10 mins analysis time

Permanent Gas Analyzer - O₂ / CO / Ar

Nexis GC-2030PNC

Analyzer Description

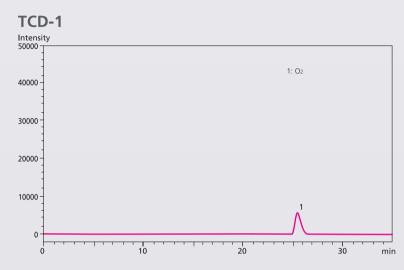
System Configuration:

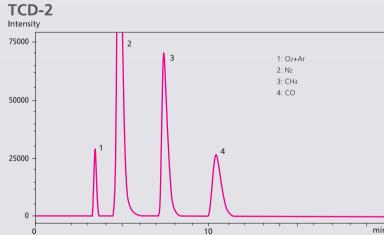
• 3 valves / 5 columns (packed) / 2 TCDs

Sample Information:

· Permanent gases

Compounds Analysed:


Permanent gases (Ar, O₂, N₂, CH₄ and CO)


Typical Concentration Range:

0.05 % (Ar+O₂), 0.05 % (N₂),
 0.05 % (O₂, CO), 0.05 % (CH₄)

Features

- Dual channel TCDs with rugged packed columns
- Backflush of water and C2 + heavier hydrocarbons
- Configured for analysis of various gas mixture with similar composition
- Independent channel for O2 analysis
- · 30 mins analysis time

Permanent Gas Analyzer

Nexis GC-2030PGAS1

Analyzer Description

System Configuration:

• 2 valves / 4 columns (packed) / 2 TCDs

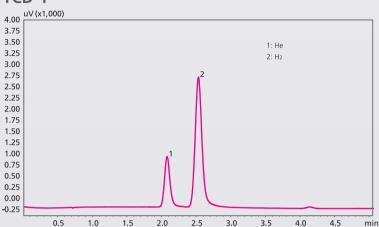
Sample Information:

· Permanent gases

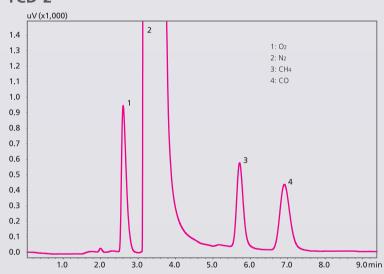
Compounds Analysed:

• Permanent gases (He, H_2 and Ar / O_2 , N_2 , CH_4 and CO)

Typical Concentration Range:


0.005 % (He, H₂ and Ar), 0.005 % (O₂),
 0.005 % (N₂)

Features


- Dual channel TCDs with packed and capillary columns
- Backflush of water and C2 + heavier hydrocarbons
- Configured for analysis of various gas mixture with similar composition
- Dedicated channel for He and H₂ analysis
- 10 mins analysis time

Typical Chromatogram

TCD-2

Town Gas

Municipal gas is widely used for power generation for industrial and household. Monitoring of calorific values is important for stable supply of municipal gas.

Composition of municipal gases varies, depends on their generation source. Typical municipal gas contains C2 to C3 hydrocarbons (C_2H_6 , C_2H_4 , C_2H_2 , C_3H_8) and O_2 , N_2 , CO, CO_2 , H_2 as well as other contaminants like hydrogen sulphide may also present.

Shimadzu town gas analyzers are provided with dedicated calorific calculation software to calculate and generate the heating value report. Each GC is configured for analyzing permanent gases (O₂, N₂, CO, CO₂, H₂) and hydrocarbons content (C2 and C3) in municipal gases.

Town Gas Analyzer

Nexis GC-2030TGA1 with Hydrogen / Nexis GC-2030TGA2 without Hydrogen

Analyzer Description

System Configuration:

 3 valves / 6 columns (packed) / 2 TCDs

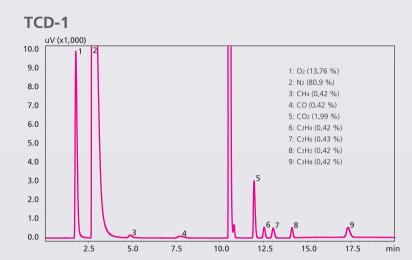
Sample Information:

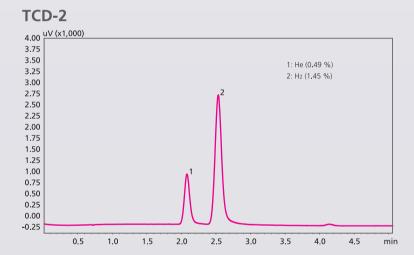
 Municipal gas or similar gaseous mixture

Compounds Analysed:

 He, H₂, O₂, N₂, CO, CO₂, C₂H₆, C₂H₄, C₂H₂, C₃H₈

Typical Concentration Range:


 0.01 % mol for permanent gases (He, H₂, O₂, N₂, CH₄, CO, CO₂) and C2 to C3 hydrocarbons


Reference Method:

· ASTM D-1946

Features

- · Dual TCD channels
- Dedicated channel for Helium and Hydrogen
- · Rugged packed columns
- 20 mins analysis time
- Optional BTU Calorific and Specific Gravity Calculation Software

Simple Town Gas Analyzer

Nexis GC-2030TGA3

Analyzer Description

System Configuration:

• 2 valves / 4 columns (packed) / TCD

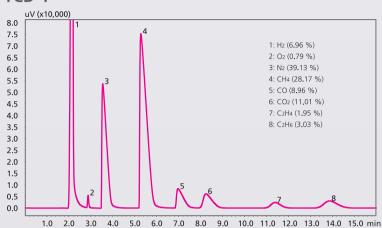
Sample Information:

 Municipal gas or similar gaseous mixture

Compounds Analysed:

 H₂, O₂, N₂, CO, CO₂, C₂H₆, C₂H₄, C₂H₂

Typical Concentration Range:


 0.01 % mol for permanent gases (H₂, O₂, N₂, CH₄, CO, CO₂) and C2 hydrocarbons

Reference Method:

· ASTM D-1946

Typical Chromatogram

- · Single TCD channel
- · Rugged packed columns
- 16 mins analysis time
- Optional BTU Calorific and Specific Gravity Calculation Software

Greenhouse Gases

Monitoring of Gases
That Contribute to Climate
Change

Increase of fossil fuels consumption contribute to increase of greenhouse gases: mainly CO₂, CH₄ and N₂O in our atmosphere that traps heat and affects Earth's temperature.

Continuous monitoring of these GHG concentrations helps to track the greenhouse gases emission trend and aids in the fight against climate change. Concentration of main compounds of GHGs is significantly different depending on exhausting source. Shimadzu offers the best concentration range solution for each monitoring source with combination of multiple detectors such as FID, TCD, ECD and BID.

Greenhouse Gases Analyzer - N2O

Nexis GC-2030N₂O1

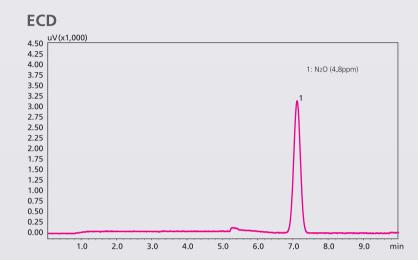
Analyzer Description

System Configuration:

• 2 valves / 3 columns (Capillary) / ECD

Sample Information:

· Greenhouse gases and soil gases


Compounds Analysed:

• N₂O

Typical Concentration Range:

• 50ppb N₂O

Typical Chromatogram

- Single channel with high sensitive ECD detector for ppb level
- · Easily expand to include SF6
- 9 mins analysis time

Greenhouse Gases Analyzer - N2O / CH4 / CO2

Nexis GC-2030N₂OCC1

Analyzer Description

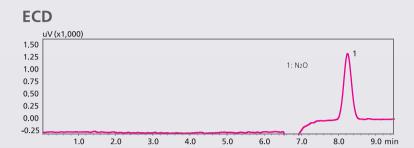
System Configuration:

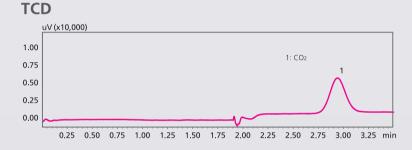
 4 valves / 7 columns (packed and capillary) / ECD / TCD / FID

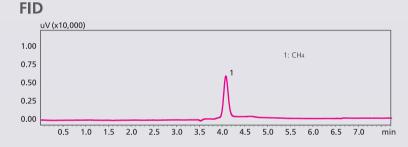
Sample Information:

· Greenhouse gases and soil gases

Compounds Analysed:


· N₂O, CO₂, CH₄


Typical Concentration Range:


* 50 ppb N_2O , 1 ppm CH_4 , 100 ppm CO_2

Features

- Dual channel with high sensitive ECD detector for N₂O ppb level, CH₄ and CO₂ for TCD and FID at ppm level.
- Easily expand to include SF6
- · 9 mins analysis time

Greenhouse Gases Analyzer - N2O / CH4 / CO2 / CO

Nexis GC-2030N₂OCCC1

Analyzer Description

System Configuration:

 5 valves / 7 columns (packed and capillary) / ECD / TCD / methanizer
 FID

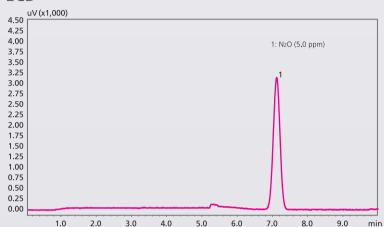
Sample Information:

· Greenhouse gases and soil gases

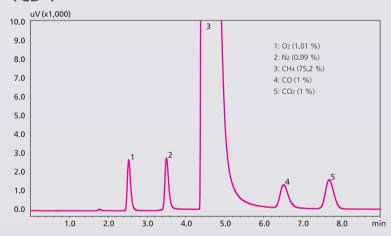
Compounds Analysed:

• N_2O , CO_2 , CH_4 , CO, O_2 , N_2

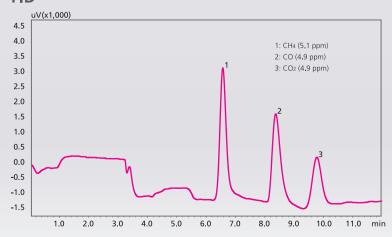
Typical Concentration Range:


50 ppb N₂O, 1 ppm CH₄, 1 ppm CO₂,
 1 ppm CO, 0.01 % CO₂, 0.01 % CO,
 0.01 % CH₄, 0.01 % O₂, 0.01 % N₂

Features


- Dual channel with high sensitive ECD detector for N₂O ppb level,
 O₂, N₂, CH₄, CO and CO₂ for TCD at % level and CH₄, CO and CO₂ for methanizer FID at ppm level.
- Easily expand to include SF6
- 11 mins analysis time

Typical Chromatogram


ECD

TCD-1

FID

Transformer Oil Gas

When oil-type transformer has malfunction, degradation of oil inside the transformer by heating or arc-discharge. This gas solves into the oil. The malfunction can be determined by extracting and analyzing the gas.

Shimadzu offers both of System GC compliant with ASTM D-3612 Method B (oil stripper sampling) and ASTM D-3612 Method C (headspace sampling).

Transformer Oil Gas Analyzer - D3612 Method B (Oil Stripper Column)

Nexis GC-2030TOGAS1

Analyzer Description

System Configuration:

 2 valves / 6 columns (packed) / Oil Stripper / methanizer FID / TCD

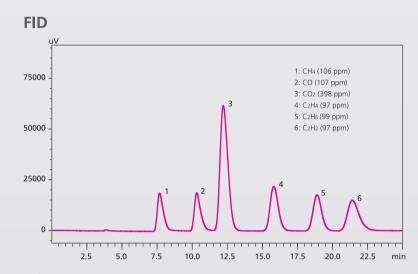
Sample Information:

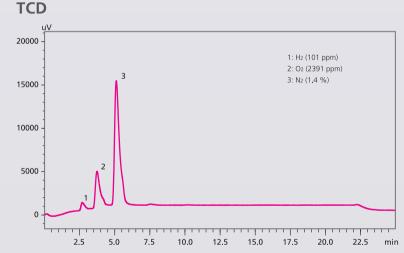
· Transformer oil

Compounds Analysed:

 H₂, O₂, N₂, CO₂, CH₄, CO, C₂H₆, C₂H₄ and C₂H₂

Typical Concentration Range:


20 ppm for H₂, 500 ppm for O₂,
 500 ppm for N₂, 1 ppm for CH₄,
 2 ppm for CO and CO₂, 1 ppm for
 C2 hydrocarbons (C₂H₆, C₂H₄, C₂H₂).


Reference Method:

· ASTM D-3612 Method B

Features

- Trace levels of CO and CO₂ can be converted to CH₄ for FID detection
- Direct oil sample injection through oil stripper.
- · 17 mins analysis time

Transformer Oil Gas Analyzer - D3612 Method C (Headspace Sampling)

Nexis GC-2030TOGAS2

Analyzer Description

System Configuration:

2 valves / 3 columns (packed) /
Packed injector for Headspace option
/ methanizer FID / TCD

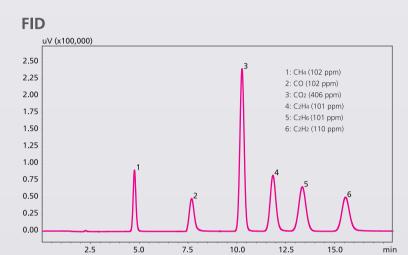
Sample Information:

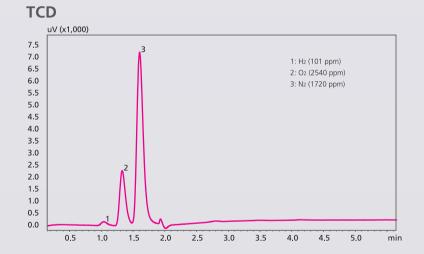
· Transformer oil

Compounds Analysed:

 H₂, O₂, N₂, CO₂, CH₄, CO, C₂H₆, C₂H₄ and C₂H₂

Typical Concentration Range:


2.5 ppm for H₂, 50ppm for O₂,
 50 ppm for N₂, 1 ppm for CH₄, ,CO,
 CO₂ and C2 hydrocarbons (C₂H₆,
 C₂H₄, C₂H₂).


Reference Method:

· ASTM D-3612 Method C

Features

- Trace levels of CO and CO2 can be converted to CH4 for FID detection
- Manual sampling with Headspace option
- · 17 mins analysis time

Transformer Oil Gas Analyzer - D3612 Method C

Nexis GC-2030TOGAS3

Analyzer Description

System Configuration:

3 valves / 3 columns (packed) /
Packed injector for Headspace option
/ methanizer FID / TCD / PDHID

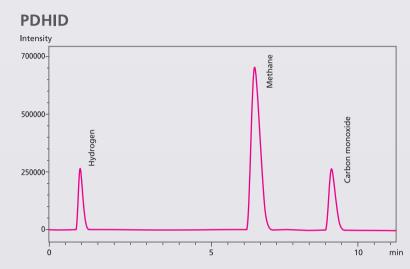
Sample Information:

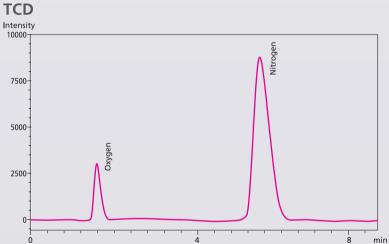
· Transformer Oil

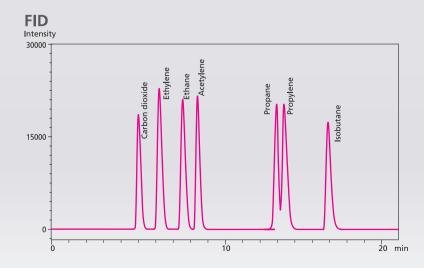
Compounds Analysed:

H₂, O₂, N₂, CO₂, CH₄, CO, C₂H₆,
 C₂H₄, C₂H₂, C₃H₈, C₃H₆ and i-C₄H₁₀

Typical Concentration Range:


0.1 ppm for H₂, 50 ppm for O₂,
50 ppm for N₂, 0.1 ppm for CH4 and CO, 1 ppm for CO₂, 0.1 ppm for C2 hydrocarbons (C₂H₆, C₂H₄, C₂H₂),
0.2 ppm for C3 hydrocarbons (C₃H₈, C₃H₆) and 1 ppm for i-C₄H₁₀.


Reference Method:


· ASTM D-3612 Method C

Features

- Trace levels of H₂, CH₄ and CO detect by PDHID
- Trace levels of CO and CO₂ can be converted to CH₄ for FID detection
- Detection of hydrocarbons from C2 to C4 on FID.
- Manual sampling with Headspace option
- · 20 mins analysis time

Analyzer BY REFERENCE

Natural Gas

Model	Description	Configured per Published Method
Nexis GC-2030NGA1	Natural Gas Analyzer with He/H ₂ Analysis	ASTM D-1945, D-3588, GPA-2261
Nexis GC-2030NGA2	Natural Gas Analyzer without He/H ₂ Analysis	ASTM D-1945, D-3588, GPA-2261
Nexis GC-2030FNGA1	Fast Natural Gas Analyzer with He/H ₂ Analysis	ASTM D-1945, D-3588, GPA-2261
Nexis GC-2030FNGA2	Fast Natural Gas Analyzer without He/H ₂ Analysis	ASTM D-1945, D-3588, GPA-2261
Nexis GC-2030ENGA1	Extended Natural Gas Analyzer (Single Oven)	ASTM D-1945, D-3588, GPA-2286
Nexis GC-2030ENGA2	Extended Natural Gas Analyzer (Dual Oven)	ASTM D-1945, D-3588, GPA-2286
Nexis GC-2030ISO6974-3	Natural Gas Analyzer (ISO6974-3)	ISO6974-3
Nexis GC-2030ISO6974-4	Natural Gas Analyzer (ISO6974-4)	ISO6974-4
Nexis GC-2030 BIDUFNGA	BID Ultra-Fast Natural Gas Analyzer	ASTM D-1945, D-3588, GPA-2261

Refinery Gas

Model	Description	Configured per Published Method
Nexis GC-2030FRGA1	Refinery Gas Analyzer with He/H ₂ Analysis	ASTM D-1945, D-3588, GPA-2261
Nexis GC-2030FRGA2	Refinery Gas Analyzer without He/H ₂ analysis	ASTM D-1945, D-3588, GPA-2261
Nexis GC-2030HSRGA1	High-Speed RGA with He/H ₂ analysis	ASTM D-1945, D-3588, GPA-2261
Nexis GC-2030HSRGA2	High-Speed RGA without He/H ₂ analysis	ASTM D-1945, D-3588, GPA-2261
Nexis GC-2030ERGA1	Extended Refinery Gas Analyzer with He/H ₂ analysis	ASTM D-1945, D-3588, GPA-2261
Nexis GC-2030ERGA2	Extended Refinery Gas Analyzer without He/H ₂ analysis	ASTM D-1945, D-3588, GPA-2261
Nexis GC-2030CERGA1	Complete Extended Refinery Gas Analyzer	ASTM D-1945, D-3588, GPA-2261
Nexis GC-2030 BIDUFRGA	BID Ultra-Fast RGA with BID-2010 analysis	ASTM D-1945, D-3588, GPA-2261
Nexis GC-2030 BIDERGA-S	BID Extended RGA with BID-2010 analysis (Single Oven)	ASTM D-1945, D-3588, GPA-2261
Nexis GC-2030 BIDERGA-D	BID Extended RGA with BID-2010 analysis (Dual Oven)	ASTM D-1945, D-3588, GPA-2261

Liquefied Petroleum Gases

Model	Description	Configured per Published Method
Nexis GC-2030LPGHC1	Hydrocarbons in LPG Analyzer with Vaporiser	ASTM D-2163
Nexis GC-2030LPGHC2	Hydrocarbons in LPG Analyzer with Liquid Sampling Valve	ASTM D-2163

Analyzer BY REFERENCE

Trace Gases

Model	Description	Configured per Published Method
Nexis GC-2030CCC1	Trace gases analyzer - CO ₂ , CO and CH ₄	UOP 603
Nexis GC-2030CCC2	Trace gases analyzer - CO ₂ , CO and CH ₄	
Nexis GC-2030CCC3	Trace gases analyzer - CO ₂ , CO and CH ₄	UOP 603
Nexis GC-2030CCC4	Trace gases analyzer - CO ₂ , CO and CH ₄	UOP 603
Nexis GC-2030CCC5	Trace gases analyzer - CO ₂ , CO and CH ₄	UOP 603
Nexis GC-2030TCC	Trace gases analyzer - CO ₂ , CO and CH ₄	ASTM D-2504
Nexis GC-2030TH2	Trace H ₂ Analyzer	ASTM D-2504
Nexis GC-2030TNO	Trace O ₂ /N ₂ Analyzer	ASTM D-2504
Nexis GC-2030HC2	Methane Purity Analyzer	

Trace Sulfur

Model	Description	Configured per Published Method
Nexis GC-2030SUL1	Trace Sulphur Analyzer	

Reformulated Fuel

Model	Description	Configured per Published Method
Nexis GC-2030BTA1	Reformulated Fuel Analyzer - BT	ASTM D-3606
Nexis GC-2030FBTA1	Reformulated Fuel Analyzer - BT	ASTM D-3606
Nexis GC-2030ACA1	Reformulated Fuel Analyzer - Aromatics	ASTM D-5580
Nexis GC-2030OAS	Reformulated Fuel Analyzer - Oxygenates	ASTM D-4815
Nexis GC-2030OAS3	Reformulated Fuel Analyzer - Oxygenates	UOP 960
Nexis GC-2030_3606-4815-5580_1	Reformulated Fuel Analyzer - BT / ARO / OXY	ASTM D-3606, ASTM D-5580, ASTM D-4815

Detailed Hydrocarbons Analysis

Model	Description	Configured per Published Method
Nexis GC-2030 PONA Series	Detailed Hydrocarbons Analyzer	ASTM D-6729, ASTM D-6730, ASTM D-5134

Simulated Distillation

Model	Description	Configured per Published Method
Nexis GC-2030SDA	Simulated Distillation Analyzer	ASTM D-2887, D-3710, D-5307, D-6417, D-7213, D-6352,
		D-7169, D-7500, D-7096, EN 15199-1, JIS K 2254

Permanent Gases

Model	Description	Configured per Published Method
Nexis GC-2030PCC1	Permanent Gases Analyzer - CO / CO ₂	
Nexis GC-2030PNC	Permanent Gas Analyzer - O ₂ / CO / Ar	
Nexis GC-2030PGAS1	Permanent Gas Analyzer	

Town Gas

Model	Description	Configured per Published Method
Nexis GC-2030TGA1	Town Gas Analyzer with He / H ₂ analysis	ASTM D-1946
Nexis GC-2030TGA2	Town Gas Analyzer without He / H ₂ analysis	ASTM D-1946
Nexis GC-2030TGA3	Simple Town Gas Analyzer	ASTM D-1946

Greenhouse Gases

Model	Description	Configured per Published Method
Nexis GC-2030N ₂ O1	Greenhouse Gases Analyzer - N ₂ O	
Nexis GC-2030N ₂ OCC1	Greenhouse Gases Analyzer - N ₂ O / CH ₄ / CO ₂	
Nexis GC-2030N ₂ OCCC1	Greenhouse Gases Analyzer - N_2O / CH_4 / CO_2 / CO	

Transformer Oil Gas

Model	Description	Configured per Published Method
Nexis GC-2030TOGAS1	Transformer Oil Gas Analyzer - D3612 Method B (Oil Stripper Column)	ASTM D-3612 B method
Nexis GC-2030TOGAS2	Transformer Oil Gas Analyzer - D3612 Method C (Headspace Sampling)	ASTM D-3612 C method

For More Information:

Learn more:

http://www.shimadzu.com/an/system-gc/index.html

Find your Shimadzu Products in Your Country: http://www.shimadzu.com/contact/index.html

First Edition: October, 2017

Shimadzu Corporation www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedures.
This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. Ine content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of shimadzu. Company names, products/service names and logos used in this publication are trademarks and trade names of Shimadzu Corporation, its subsidiaries or its affiliates, whether or not they are used with trademark symbol "TM" or "®".

Third-party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not they are used with trademark symbol "TM" or "®".

Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own.

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.