

Application News

No. AD-0131

Food Safety for Packaging Material / HS-20 GC-2010 Plus

Detection of 27 Residual Solvents in Food Packaging using Parallel Dual-Column Headspace Gas Chromatography

□ Introduction

Food safety has gained escalated interest worldwide in recent years. It involves the whole process of food production, from the start of food processing to the end of food packaging. Food packaging is a barrier between food and the atmosphere that prolongs the shelf life of food, particularly for the perishables. Other than functioning as a physical barrier, the packaging is often printed with information labels or artwork. The use of inks for these prints leaves a possibility that residual solvents from the inks may migrate to the food, which affects not only the taste and flavour, but more importantly, causes toxicity to users [1]. Current food safety regulations specify that the amount of residual solvents present in packaging material to be controlled [2]. For instance, Korea Ministry of Food and Drug Safety regulates the residual toluene in packaging material should be less than 2mg/m² [2]. Headspace (HS) technique coupled with gas chromatography (GC) and flame ionization detector (FID) is routinely used for such measurement to eliminate the tedious sample preparation. In this application news, an automated parallel dual-column HS-GC technique was applied for simultaneous confirmation and quantitation of 27 residual solvents in packaging materials.

Experimental

Instrumental and analytical conditions

HS-20 headspace autosampler paired with GC-2010 Plus (Shimadzu Corporation, Japan) was used in this study. One column is not sufficient to achieve baseline separation for some targeted solvents. To avoid the inconvenience of changing column, an automated parallel dual-column HS-GC technique was developed in this study to separate a mixture of 27 solvents. Both columns were connected in parallel to the HS-20 interface using ferrules and nuts (Figure 1) to separate FIDs. Columns with the same diameter and length were used to ensure even carrier gas flow into both columns. The analysis conditions are presented in Table 1.

Chemicals and samples

The 27 solvents (Table 2) were either obtained from Kanto Chemical (Tokyo, Japan) or Sigma Aldrich (City, USA). The solvents mixture was diluted to 0.02% using ethyl acetate, while measurement of ethyl acetate utilised methanol as diluent. Five microliters of 0.02% residual solvents mixture was pipetted into a 20-mL HS vial and sealed with a crimp cap. This was equivalent to an absolute weight of 1µg of each residual solvent in the crimped HS vial and served as a 1-point calibration standard by full evaporation technique.

Three packaging materials (samples) from company X were analysed. The sample preparation was carried out in accordance to ASTM 1884-04 [3]. Each sample was cut into an area of 100cm² and subsequently cut into smaller pieces before they were placed into a 20-mL HS vial. The HS vial was then crimped tightly for subsequent HS-GC analysis. No pre-treatment step was needed. Three vials were prepared for each sample to check for its repeatability.

Instrumentation					
GC-FID	GC2010 Plus				
Auto Injector	HS-20				
Column1	SH-Rtx [™] -VMS				
Columni	60m x 0.25mm ID x 1.4μm df				
Column2	SH-Rxi [™] -1MS				
	60m x 0.25mm ID x 1.0μm df				
HS					
Oven Temperature	120°C				
Sample Line Temperature	150°C				
Transfer Line Temperature	150°C				
Pressurizing Gas Pressure	50kPa				
Equilibrating Time	15min				
Pressurizing Time	1min				
Pressure Equilibration Time	0.1min				
Load Time	0.5min				
Load Equilibration Time	0.1min				
Shaking Level	Off				
Injection Time	1min				
GC					
Injustion Mode	Split mode				
Injection wode	Split ratio 20				
Standards Amount in Vial	5µL of 0.02% solvents mixture				
Sample Amount in Vial	100cm ²				
Carrier Gas	Helium				
	Constant linear velocity mode				
Gas Flow Condition	Linear velocity 25cm/s				
	Purge flow 5mL/min				
Oven Temperature	35°C (10min)				
Programming	→20°C/min to 90°C (5min)				
Flogramming	→20°C/min to 180°C (7min)				
FID					
Detector Temperature	200°C				
Hydrogen Flow	40mL/min				
Synthetic Air Flow	400mL/min				
Make-up Gas Flow (Nitrogen)	30mL/min				

Table 1: HS-GC analytical conditions for residual solvent analysis

Application No. AD-0131 News

Figure 1a: Parallel dual-column configuration for HS-GC allows a single injection into 2 columns simultaneously

Results and Discussion

Selection of diluents and separation

The chromatographic peak shapes of the residual solvents dissolved in two diluents (methanol and ethyl acetate) were investigated. Higher peak tailing of polar compounds were observed in methanol compared to ethyl acetate (Figure 2), thus, ethyl acetate was selected as the diluent. For quantitation of ethyl acetate, methanol was used as diluent since good peak shape was still obtained as shown in Figure 2.

The chromatogram of the solvents mixture separated by two different columns are displayed in Figure 3. Neither columns could achieve baseline separation for 1-butanol and methoxy propanol. In addition, the unresolved isomers m- and p-xylene were quantified as a group.

ethyl acetate (black) with SH-Rtx-VMS column by HS-GC (ethyl acetate (shaded in orange) and an example of polar compound, isobutanol, (shaded in blue))

VMS column and (B) SH-Rxi-1MS column

Table 2: The mean RT, mean S/N & % RSD of 1µg standard solvent each and amount of residual solvents in µg per 100cm² of packaging materials detected by parallel column HS-GC analysis

	Solvents	Standard solvents mixture (1µg each) n=10					Amount of solvents detected in packaging			
No		SH-Rtx-VMS column		SH-Rxi-1MS column			materials (µg) n=3			
		Mean RT	Mean S/N	Area %RSD	Mean RT	Mean S/N	Area %RSD	Sample A	Sample B	Sample C
1	Methanol	6.896	293	6.1	5.117	484	5.0	0.97	1.36	0.71
2	Ethanol	9.666	79	2.5	6.295	170	1.3	0.09	0.09	1.02
3	Isopropyl Alcohol	11.571	143	1.8	7.516	145	1.9	0.08	1.28	0.11
4	Acetone	11.850	175	1.1	7.122	164	1.2	0.06	0.64	0.10
5	Methyl Acetate	12.192	157	1.9	8.785	121	2.1	Not Detected	0.08	Not Detected
6	n-Propanol	14.191	81	3.0	10.438	101	2.1	Not Detected	Not Detected	Not Detected
7	Cyclohexane	15.090	321	1.2	15.201	423	1.1	0.34	0.57	0.42
8	Ethyl Acetate	15.498	299	2.2	16.686	241	1.8	4.31	1.17	0.52
9	Methyl Ethyl ketone	15.968	379	1.7	11.769	245	1.7	0.37	0.48	0.18
10	Benzene	16.551	475	1.8	14.781	605	1.7	0.01	0.03	0.02
11	Isobutanol	16.961	139	2.4	13.298	162	1.7	Not Detected	Not Detected	Not Detected
12	Isopropyl Acetate	17.519	209	2.0	Overlap			0.97	0.78	0.21
13	1-Butanol	18.575	30	7.1				Not Detected	0.08	0.10
14	Methoxy Propanol	18.806	140	9.5	15.088	156	3.0	Not Detected	0.43	Not Detected
15	Ethyl Propionate	19.350	287	1.8	16.625	264	2.0	0.11	0.33	0.09
16	N-Propyl Acetate	19.631	282	2.1	16.718	240	2.0	0.05	0.04	0.06
17	Toluene	20.693	605	2.1	19.353	594	2.1	22.17	3.35	20.37
18	1-Ethoxy-2-propanol	21.050	215	2.3	18.461	214	2.4	0.02	0.05	0.11
19	Methyl Isobutyl ketone	21.274	377	2.2	17.875	303	2.0	0.71	0.40	0.66
20	Isobutylacetate	21.428	353	2.2	19.278	319	2.2	0.07	0.84	0.05
21	Propyl Propionate	22.132	373	2.2	20.375	395	2.2	Not Detected	0.05	0.75
22	n-Butyl Acetate	22.354	360	2.3	20.487	382	2.3	Not Detected	0.11	0.05
23	Ethylbenzene	23.064	748	2.3	22.095	895	2.3	0.02	Not Detected	0.03
24	m- & p-Xylene	23.275	389	2.4	22.283	343	2.3	Not Detected	Not Detected	0.66
25	Methoxy Butanol	23.641	143	2.4	20.882	236	2.4	0.11	Not Detected	0.14
26	Methoxy Propyl Acetate (MPAC)	23.848	279	2.4	21.743	325	2.2	0.08	1.12	0.39
27	O-Xylene	23.951	103	2.6	22.848	121	2.3	Not Detected	0.04	0.09

Note: The solvents amount in samples highlighted with blue font were determined using SH-Rtx-VMS column and those in red font were quantitated by SH-Rxi-1MS column Quantitation of ethyl acetate for sample was performed with methanol as diluent

Target analyte identity confirmation and quantitation

Two columns with different stationary phases aided the separation of the residual solvents. At the same time, the analysis using the second column served as a confirmatory method. Since GC/FID does not produce mass spectrum (unlike GC/MS), analysis using the second column confirmed the presence of the solvents. Subsequently, the confirmed residual solvent were quantified easily by using the peak areas obtained from either one of the columns that had no partial peak overlap with the sample matrices. If both columns were able to give isolated target peaks, the peak with better profiles (sharper and more symmetrical) was selected to ensure good quantitative sensitivity and accuracy.

Sensitivity and precision

All the solvents (1µg each) except 1-butanol produced signal to noise ratio (S/N) greater than 100 (Table 2) in either one of the columns. This demonstrated that solvents below 1µg in a HS vial were still detectable via parallel dual-column analysis. The repeatability (%RSD of n=10) for most solvents was between 1.0% to 3.0% (Table 2). An overlay of 10 chromatograms for two selected solvents with the lowest and the highest %RSD is displayed in Figure 4.

Figure 4: Overlay of 10 chromatograms for (A) acetone and (B) methoxy propanol with %RSD of 1.1 (A) and 9.5 (B)

Sample analysis

Three different food packaging materials, namely A, B and C were analysed. The chromatograms for Sample C with three replicate analyses are displayed in Figure 5. The quantitative results of residual solvents in the samples are tabulated in Table 2. The most abundant residual solvent detected was toluene with a concentration of 22.2µg $(2.2mg/m^2)$, 3.4µg $(0.3mg/m^2)$ and 20.4µg $(2.0mg/m^2)$ for Sample A, B and C respectively.

Figure 5: Chromatogram of Sample C with triplicate runs using three fresh sample and vial per run

Conclusions

Determination of residual solvents in packaging materials was successfully carried out with a parallel dual column HS-GC technique. The S/N for each solvent at 1µg was more than 100, which indicate that the current system can detect residual solvents (except 1-butanol) at concentrations below 0.1mg/m^2 in food packaging material.

References

- 1. Seo. I, Shin. H.S. Food Sci. Biotechnol. 19(6): 1429-1434 (2010)
- Standards and Specifications for Food Utensils, Containers and Packages [March 2015] (https://www.mfds.go.kr/eng/eng/index.do?nMenuCode=1 20&page=1&mode=view&boardSeq=70089, retrieved 3 May 2017)
- ASTM F1884-04(2011), Standard Test Method for Determining Residual Solvents in Packaging Materials, ASTM International, West Conshohocken, PA, 2011

Rtx and Rxi are either trademarks or registered trademarks of Restek Corporation in the United States and/or other countries

SHIMADZU (Asia Pacific) Pte. Ltd

79 Science Park Drive, #02-01/08 Cintech IV, Singapore 118264 www.shimadzu.com.sg Tel: +65-6778 6280 Fax: +65-6778 2050