

New Agilent J&W Ultra Inert Capillary GC Columns

Raising the Bar for **CONSISTENT** Column Inertness Performance

Trace Level Analysis Made Routine

Agilent Technologies

Outline

- What is inertness?
- Evolution of capillary column QC Testing
- Value of Consistent Column Inertness and Exceptionally Low Bleed
- Application examples
- Take away messages

GC System Inertness What do we mean?

Problems with poor inertness usually limited to "active" solutes.

For example: Alcohols & Diols (-OH), Phenols (О)-он), Amines (-NH3), Acids (COOH), Thiols & Sulfur in general like to tail.

Thermally labile and structurally "strained" solutes will breakdown or rearrange, e.g., DDT, Endrin, Carbamates, Nitroglycerines.

Agilent Technologies

What Does GC System Inertness Look Like?

Easier question: What does poor inertness look like?

- Symptoms of poor GC system inertness:
 - * Tailing peaks
 - * Reduced peak response
 - * No peak response
 - * Extra peaks!
 - * Poor linearity of a peak usually at low concentrations
 - * Unstable detector baseline

GC System Inertness What do we mean?

Problems with poor inertness usually limited to "active" solutes.

Tailing or breakdown of "benign" solutes is symptomatic of a more generalized system problem, usually related to gross contamination.

Agilent Technologies

Possible Inertness Problem Areas

<u>Inlet</u>

• liner, liner packing, gold seal, stainless steel

Consumables

septa, syringe, vial, caps, inserts, solvents
 <u>Column</u>

GC Detector

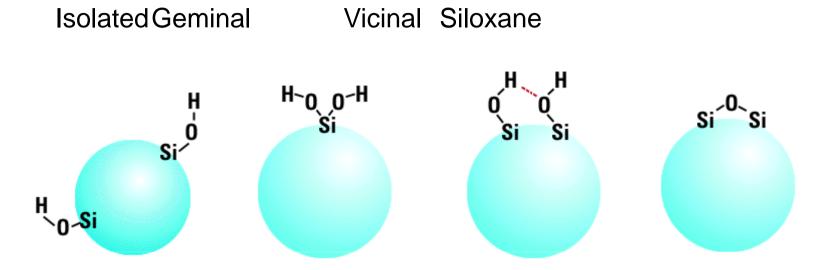
• source geometry, material, column interface, acquisition rates

Temperatures

• inlet, transfer line, source, quads, oven

Other method factors i.e. samples and standards preparation

Agilent Technologies


How important is <u>Column</u> inertness to overall <u>Flowpath</u> Inertness? GC Flowpath Surface Areas

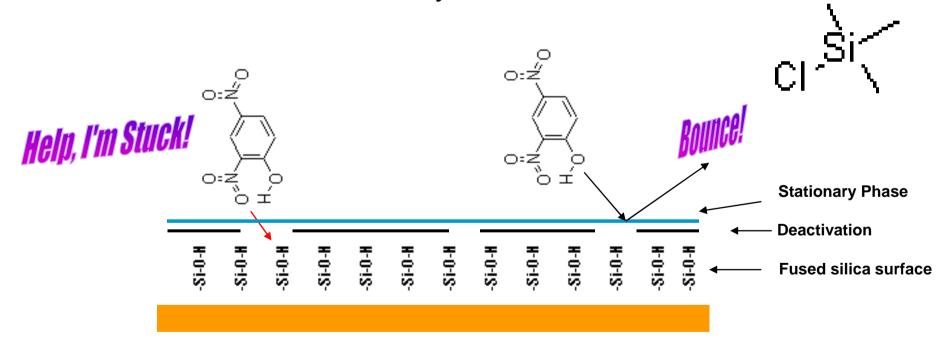
				Surface Area
	l (cm)	d (cm)	pi	(cm ²)
Liner	7	0.2	3.142	4.4
Seal	0.4	0.8	3.142	1.0
Column	3000	0.025	3.142	235.6

Agilent Technologies

Where does column activity come from?

Sterically difficult to "cap" all of them—estimates 40-65% capped with traditional deactivation.

Non-traditional sources such as trace impurities in starting materials and manufacturing lines.

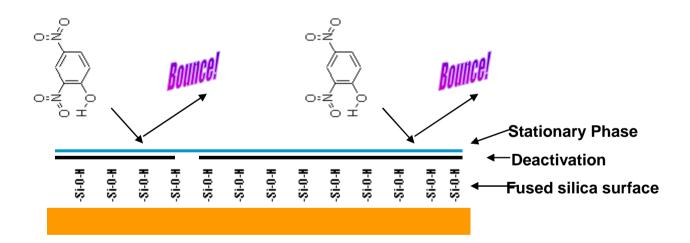


Agilent Technologies

Traditional Deactivations

Dichlorodimethylsilane, various silizanes, etc... "endcaps"

Traditional deactivation has gaps in surface coverage due to bulky TMS type moieties, and tight fused silica lattice, and is somewhat inert and chemically resistant.

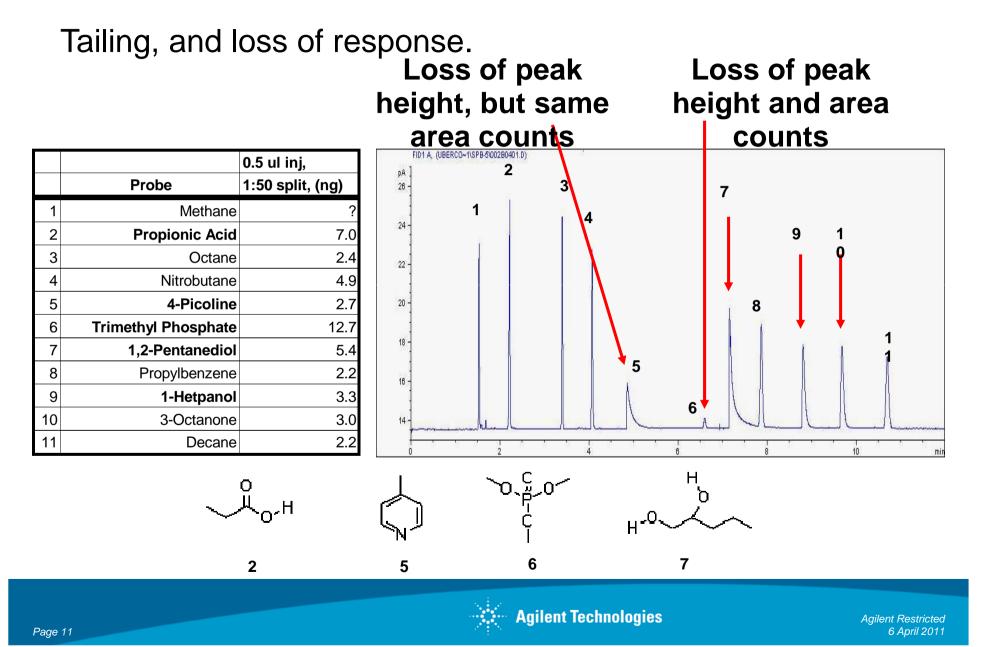


Agilent Technologies

DB-5ms and HP-5ms Engineered Deactivations

Polymeric Deactivation Technology

"Binds" at multiple points with many silanols


"Blankets" sterically hindered active silanols, fewer silanols

Agilent Technologies

si^{~0}~si

What does Column Activity look like?

What are the specific benefits of High Inertness?

Greater sensitivity for traditional trace active analytes

meet RRF requirements with greater ease

more runs before maintenance

Greater reliability for ultra-trace non-traditionally active analytes (<100 ppb PAHs, Chlorinated dioxins, etc...)

Agilent Technologies

Who benefits from High Inertness Columns?

Anyone doing trace analysis of active analytes

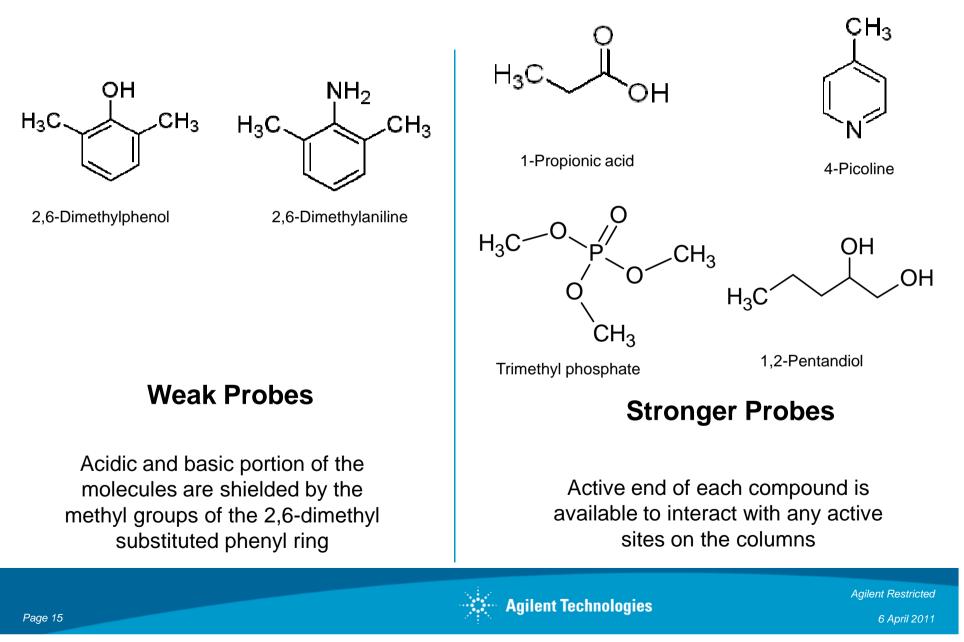
Environmental semivolatile analysts

Pesticide residue analysts

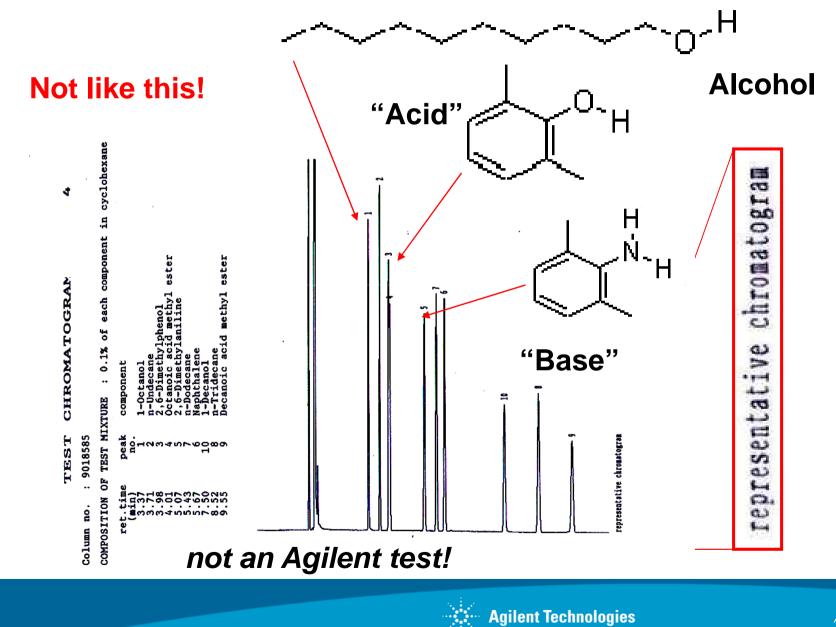
Forensic/Drug analysts

Anyone in Industry, Government, or Academia interested in ultra-trace amounts of even modestly active analytes

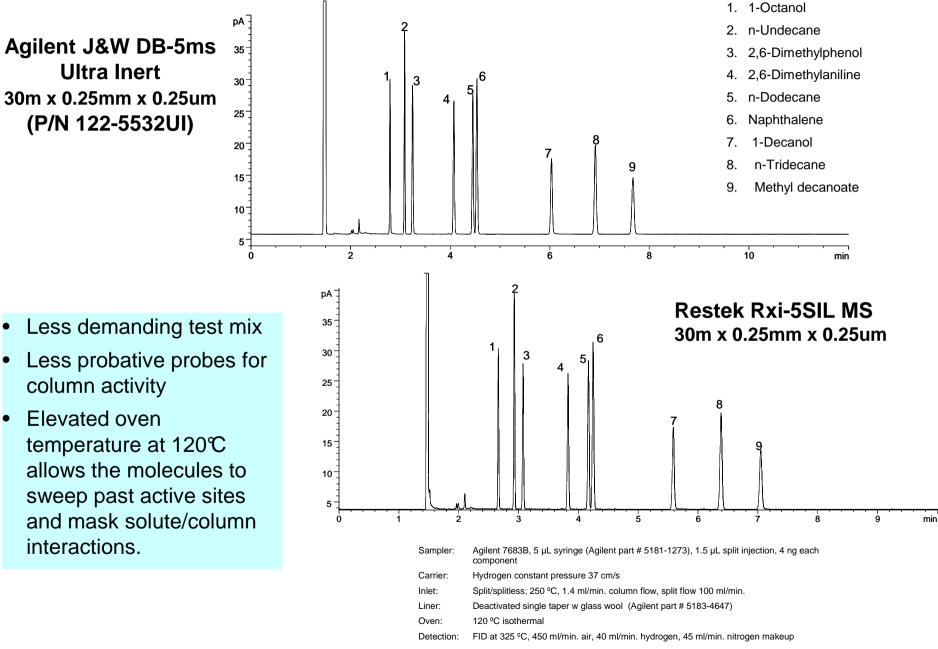
Agilent Technologies


Test Probes and Column Activity QC Testing

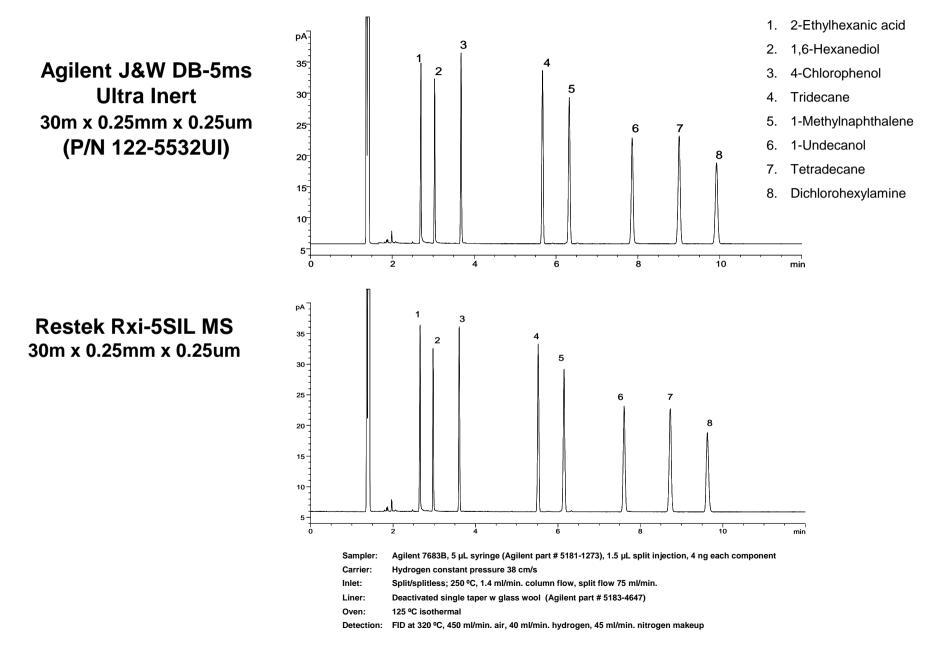
- Test probes are vital to ensure the quality and reproducibility of GC columns
 - Properly deactivated
 - Contain the correct amount of stationary phase
 - consistent batch-to-batch relative retention time
- Test probes can either highlight or mask the deficiencies of a column, normally include:
 - An organic acid (peak tailing or lost response of acid indicates the column is basic)
 - A base (peak tailing or lost response of base indicates the column is acidic)
 - An alcohol (gives indication of any oxygen damage or exposed silanols)
 - Non-active probes (e.g. alkanes)
- Good test probes allows the probative portion of the test module to penetrate and fully interact with the columns stationary phase and surface.
 - Low molecular weight
 - Low boiling points
 - No steric shielding of active group



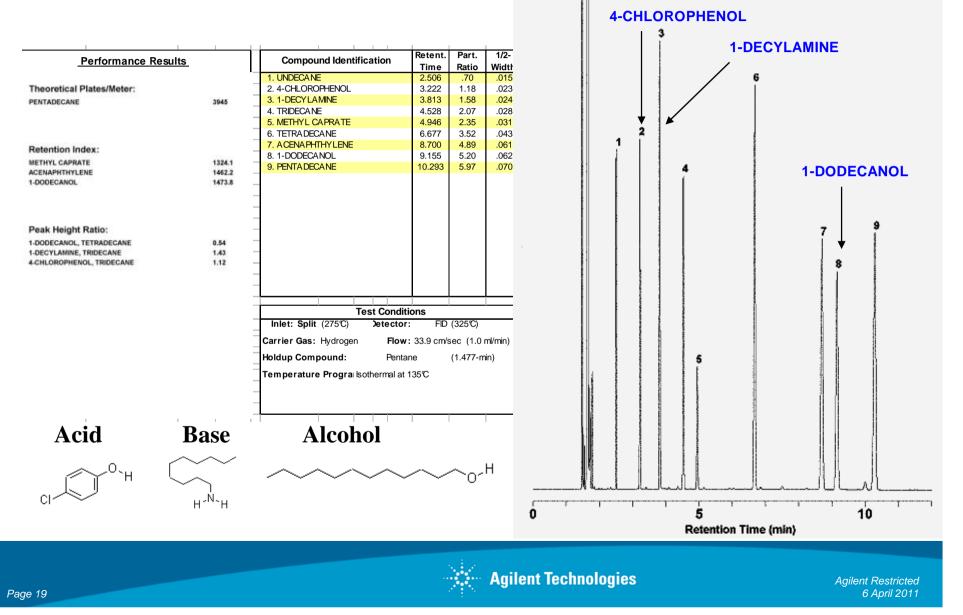
Agilent Restricted


Weak Probes vs. Strong Probes

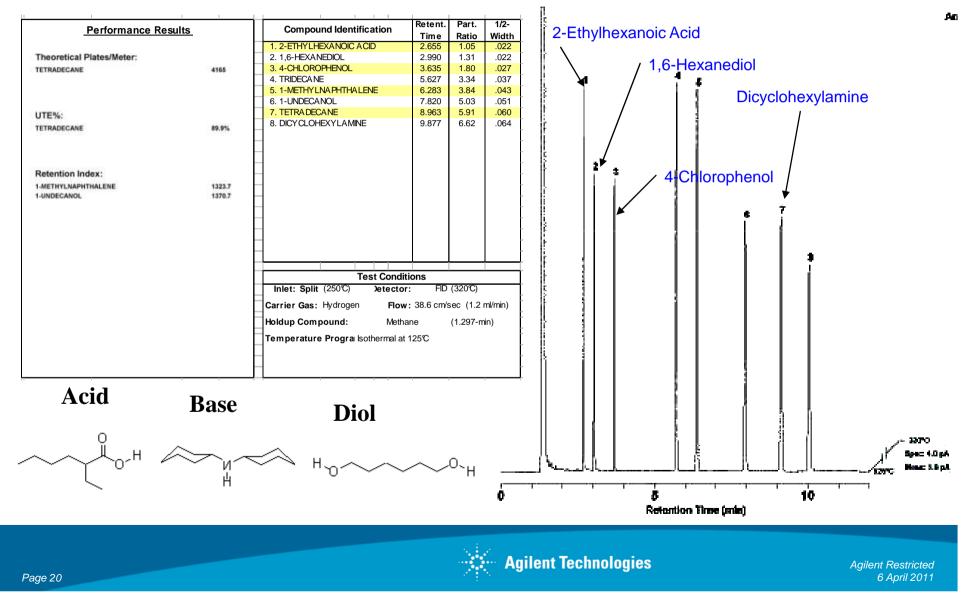
How is High GC column Inertness Assured?



Grob-Type Mix - QC Testing of the 80s



For Research Use Only. Not for use in diagnostic procedures.


DB-5ms Test Mix – QC Testing of the 90s

How Agilent Assures High Inertness on the HP-5ms columns, with Every Test

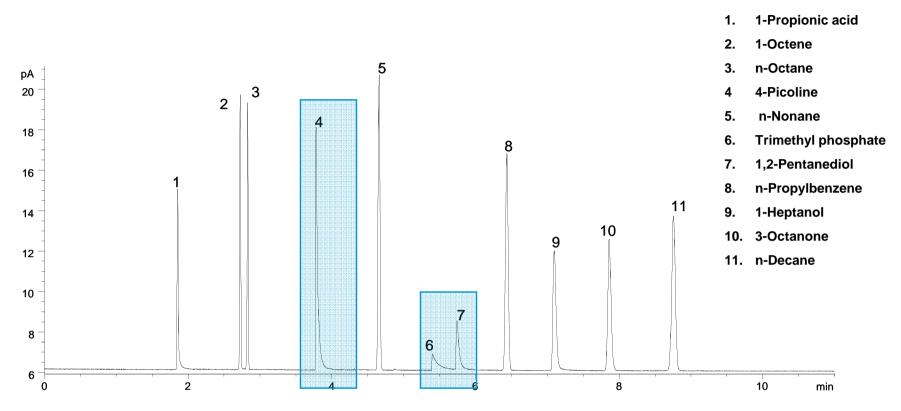
How Agilent Assures High Inertness on the DB-5ms columns, with Every Test

Ultra Inert Test Mix – QC Testing for Today's **Demanding Applications**

• •

		Column
Probe	(ng on	functional test
	column)	
1. 1-Propionic acid	1.0	Basicity
2 1-Octene	0.5	Polarity
n-Octane	0.5	Hydrocarbon marker
4. 4-Picoline	1.0	Acidity
5. n-Nonane	1.0	Hydrocarbon marker
6. Trimethyl phosphate	1.0	Acidity
7. 1,2-Pentanediol	1.0	Silanol
8. n-Propylbenzene	1.0	Hydrocarbon marker
9. 1-Heptanol	1.0	Silanol
10. 3-Octanone	1.0	Polarity
11. n-Decane	1.0	Hydrocarbon marker

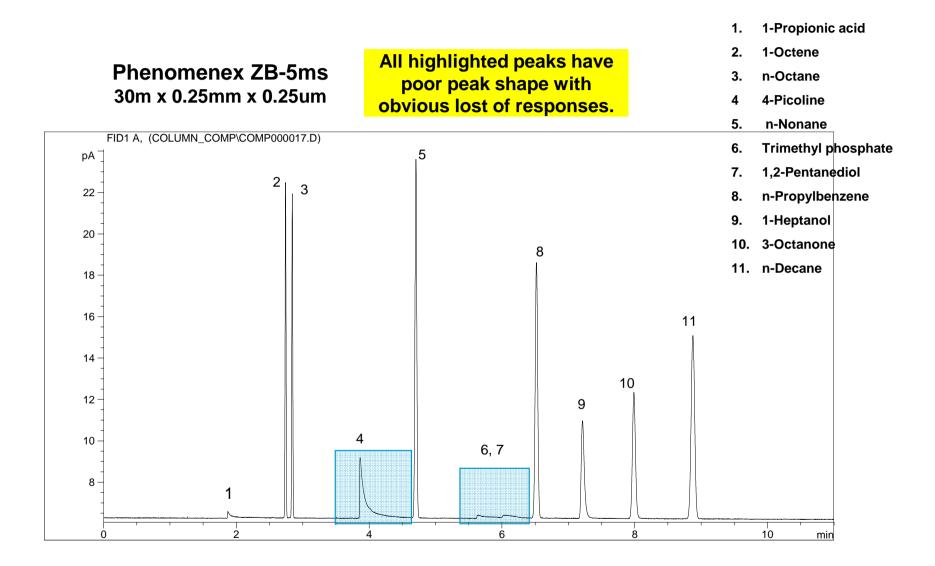
Carefully selected very demanding test probes for indepth evaluation of column inertness


Test temperature 65°C (isothermal), well below that normally used in conventional tests

Sampler:	Agilent 7683B, 0.5 μL syringe (Agilent part # 5188-5246), 0.02 μL split injection
Carrier:	Hydrogen constant pressure, 38 cm/s
Inlet:	Split/splitless; 250 ºC, 1.4 ml/min. column flow, split flow 900 ml/min., gas saver flow 75 ml/min. on at 2.0 min.
Liner:	Deactivated single taper w glass wool (Agilent part # 5183-4647)
Oven:	65 °C isothermal
Detection:	FID at 325 ⁰C, 450 ml/min. air, 40 ml/min. hydrogen, 45 ml/min., nitrogen makeup

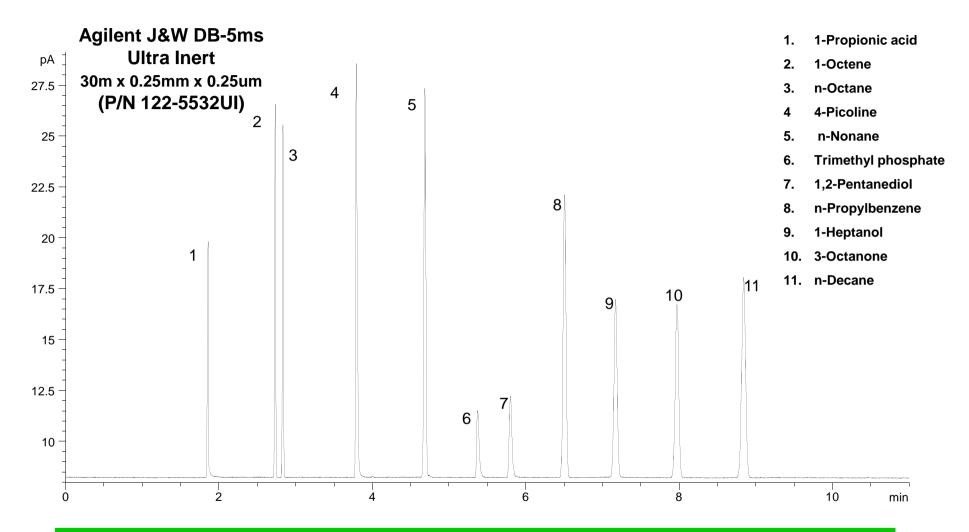
Agilent Technologies

Ultra Inert Test Mix on Restek Rxi-5Sil MS

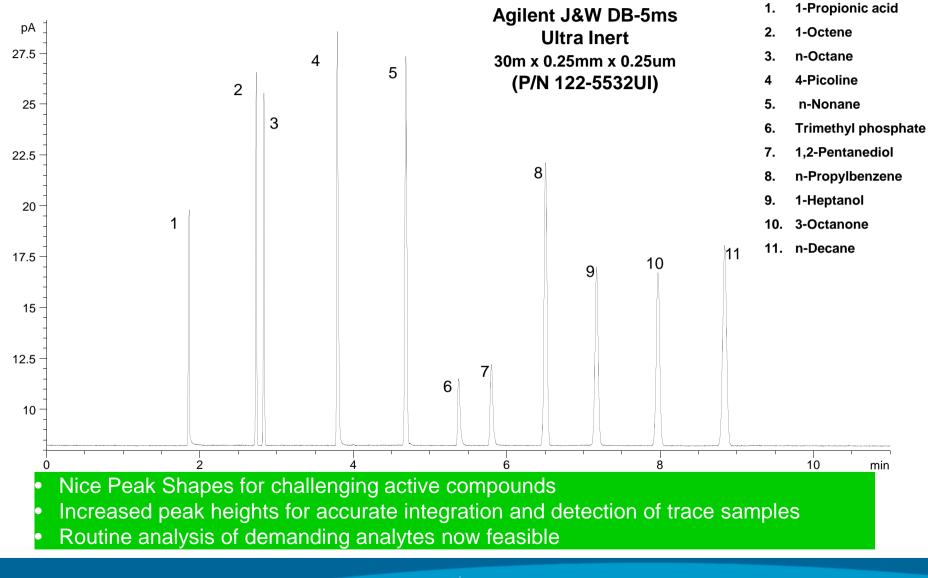


All highlighted peaks have poor peak shape – poor column deactivation

- The Restek column showed very poor performance when tested against the Über One test mix.
- Less demanding test probes masked the column activity for this Restek columns
 - The same column performed well with Grob-type test mix and DB-5ms test mix


Ultra Inert Test Mix on a Phenomenex Column

Agilent Technologies


Ultra Inert Test Mix on Agilent J&W DB-5ms Ultra Inert

Nice Peak Shapes for challenging active compounds

- Increased peak heights for accurate integration and detection of trace samples
- Routine analysis of demanding analytes now feasible

Ultra Inert Test Mix on Agilent J&W DB-5ms Ultra Inert

Agilent Technologies

Test Mix Summary

- Grob-type mix not probative for inertness
- DB-5ms text mix is a good test for the 90s
- Über One mix probes inertness and <u>differentiates an excellent column</u> from a mediocre one
- Well designed test mix uncovers potential adsorption of acid and base analytes and raises the bar in inertness QC

Challenges and Needs of Today's Laboratories

- Challenges
 - Qualification/quantification of trace samples
 - Keep instrument up and running

Needs

- Lower detection limits
- Improved stability in GC or GC/MS system

Lower Detection Limit					
Reduce noise	Increase signal				
Injection system (septa, liners, connections)	Sample concentration				
Carrier gas and detector gases	Sample size				
Leaks	Inert injection and detection port sleeves/liner				
Temperature setting	Gas velocity or temp program rate				
Stationary phase and column bleed	Column inertness				

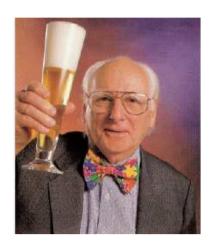
- Only when a column exhibits **both low bleed** and **low activity** are results reliable.
 - Low bleed increases the signal-to-noise ratio, but if any of the analyte is adsorbed by active sites in the column, <u>the results are flawed.</u>
 - If the column is well deactivated but the bleed is high, some of the signal generated by the analytes is smothered by the bleed signal. Again, <u>the results are flawed.</u>

Agilent Technologies

Agilent J&W Ultra Inert Columns – Innovation

- Only GC columns proven to deliver on the promise of <u>column inertness</u> and <u>column bleed</u>.
- Built on top of the existing Agilent J&W GC/MS columns with added column inertness.
- New QC testing for modern applications
 - A unique, very demanding test probe mixture to test columns individually
 - Worse case scenario testing to ensure column inertness performance
 - Raising the bar for GC column QC testing
- Critical for analysis of active compounds, trace level samples, and screening of unknown samples

Features	Advantages	Benefits		
Unique QC testing procedure with demanding Ultra Inert test probe mixture		More predictable and reliable results		
	Better peak shape	More accurate peak identification, more		
Highest column inertness	Greater S/N ratio	accurate quantification		
riighest column mermess	Minimum compound loss or degradation			
	More analysis without maintenance	Reduced costs and instrument downtime		
Exceptionally low column bleed	all detectors	Lower detection limit, reduced detector contamination, and reliable compound identification		
	Faster haseline stanalization	Minimized conditioning time and increased sample throughput		
Support of 0.18mm ID configuration	Higher sample throughput	More sample analysis in less time		

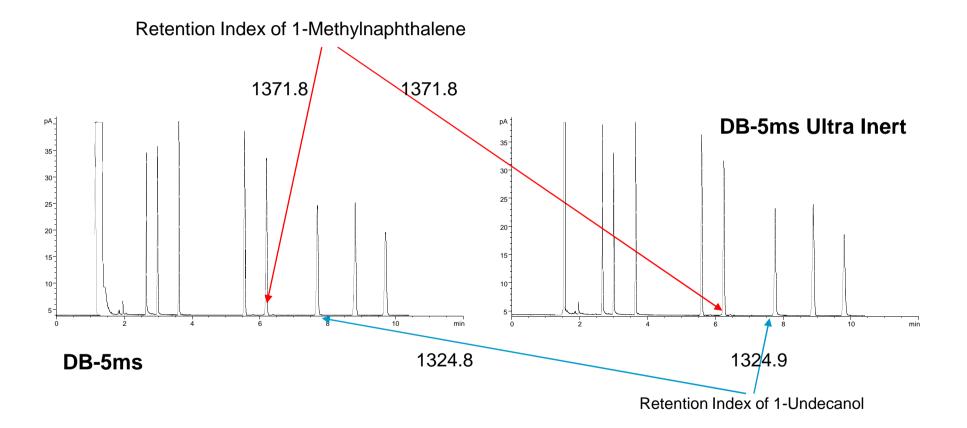

The Quality of the Ultra Inert Column Series Exceeds my Wildest Dream

"[Agilent's] breakthroughs in surface pretreatments and improvements in surface deactivation came much more rapidly than I had anticipated. The quality of the new <u>Ultra</u> <u>Inert series</u> of columns exceed my wildest dreams."

"I am satisfied that customers with the most demanding analyses of active analytes can have confidence that the DB-5ms and HP-5ms Ultra Inert Columns will provide the highest level of performance."

Walt Jennings Professor Emeritus, University of California

Every Column Individually Test – Ensured Quality


• Performance summary sheet shipped with each column with QC testing results against the Ultra Inert test probe mixture.

J&W GC	Column	Performance Sun	nmary	لاحج	
Catalog: 19091S-433UI Serial No: US8977425H	5 - 4 - 3 - U - 1	Stationary Phase: HP-5MS Description: 30m x 0.2 Temperature Limits: -60°C to 32	50mm x	********* * ******	
Performance Results		Compound Identification	Retention Time (t,)	Partition Ratio (k)	Peak Width (w _{1/2})
Theoretical Plates/Meter: n-DECANE	3472	 PROPIONIC ACID 1-OCTENE n-OCTANE 1,3-PROPANEDIOL 	1.557 2.224 2.304 2.591	0.31 0.87 0.94 1.18	0.029 0.014 0.015 0.022
Retention Index: n-PROPYLBENZENE 1-HEPTANOL	953.1 968.0	 5. 4-METHYLPYRIDINE 6. n-NONANE 7. TRIMETHYLPHOSPHATE 8. n-PROPYLBENZENE 9. 1-HEPTANOL 10. 3-OCTANONE 11. n-DECANE 	3.108 3.795 4.577 5.283 5.799 6.498 7.077	1.62 2.19 2.85 3.45 3.88 4.47 4.96	0.021 0.026 0.033 0.037 0.039 0.045
Resolution: 1-OCTENE, n-OCTANE	3.25	II. N-DECANE	1.0//	4.96	0.052

Same Selectivity – No Method Re-Development

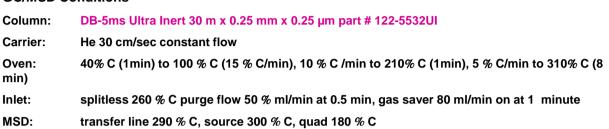
- DB-5ms Ultra Inert columns have the same selectivity as their DB-5ms counterparts
- HP-5ms Ultra Inert columns have the same selectivity as their HP-5ms counterparts

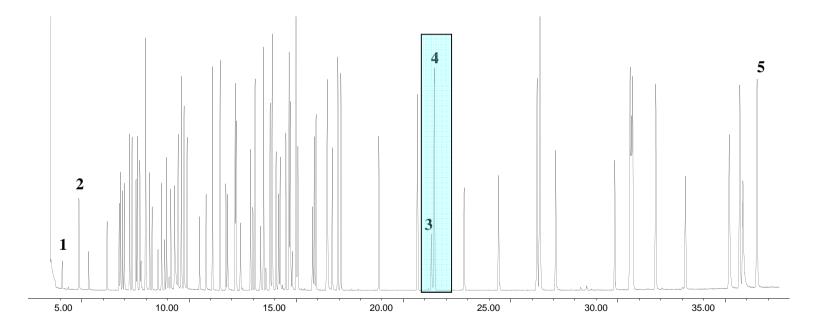
Application Examples

- Semi Volatile Analysis
- Brominated Fire Retardants
- Pesticides in Orange Oil
- PAHs
- PBDEs

Semi Volatile Analysis

1. 2. 3. 5. 6.	N-nitrosodimethylamine Aniline 1,4 dichlorobenzene-D4 Benzoic acid Naphthalene- D8 Acenapthene-D10	GC : Sampler : Carrier: Inlet: Inlet Liner: Column: Oven: Detection:	Agilent 7683 column Helium cons Split/splitles off Deactivated DB-5ms Ultr 40% C (1 min	stant flow 30 c s; 260% C, 53 single taper v a Inert 30m x n) to 100%C (1	nge (Agilent part # 5188-5246	ow 50 ml/min. on at 0. 183-4647) rt # 122-5532UI) ; (1 min), 5% C/min. to	5 min., gas saver 310% C (8 min)
7.	2,4-dinitrophenol		6	11	12		16 17
8.	4-nitrophenol		5	11	12		
9.	2-methyl-4,6-dinitrophenol						10
10. 11	pentachlorophenol 4-aminobiphenyl	3				14	18
		2					
	Benzidine						
_	Chrysene-D12						
	3,3'-dichlorobenzidine				13	15	
16.	Benzo [b] fluoroanthene			10		10	
17.	Benzo [k] fluoroanthene						
18.	Perylene-D12						
	1	4	7	9 8	L		
	5.00	10.00		15.00	20.00 25.00	30.00	· · · · · ·




"Large Mix" 5 ng on Column AccuStandard 8270 Mixes 1,2,3,4a,4b,5 &6 (93 Compounds) Select compound highlighted

1. n-Nitrosodimethylamine

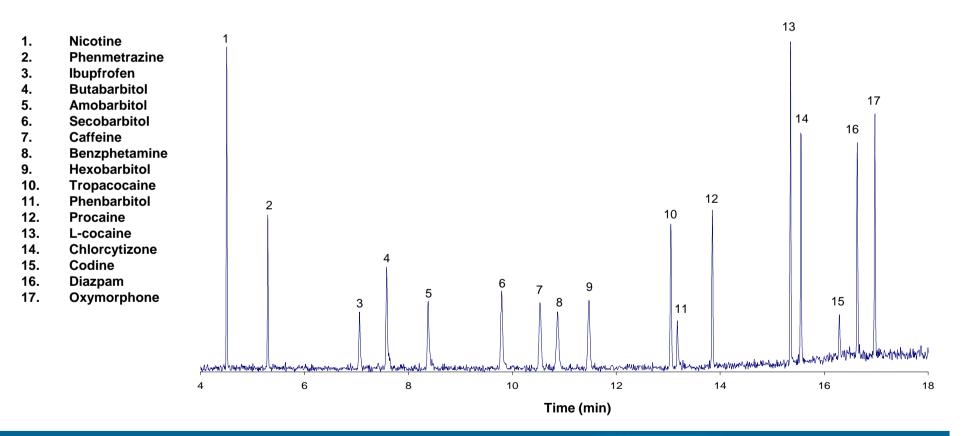
GC/MSD Conditions

- 2. 2-methyl pyridine
- 3. Benzidene
- 4. Flouranthene
- 5. Benzo (g,h,i) perylene

Agilent Restricted 6 April 2011

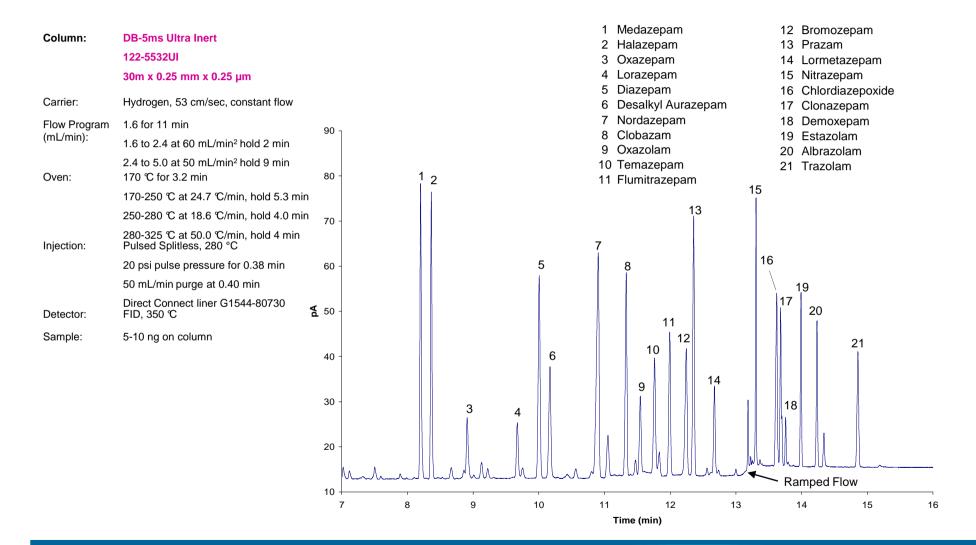
Page 34

Pesticides and Fire Retardants (US EPA 527)


1. 2.	1,2-Dimethyl-2-nitrober Acenaphthalene-D10	nzene	Sample:	Pesticide/PBD)E standards 1 ng v	vith 5ng IS/S	S on co	lumn	
3.	Dimethoate		Column:	DB-5MS Ultra	Inert 30m x 0.25mn	n x 0.25um (/	Agilent	part # 122-5532UI)	
4.	Atrazine		0				Ŭ	· · · ·	
5.	Propazine		Carrier:	Hellum 52cm	sec, constant flow				
6.	Anthracene-D10		Oven:	60°C (1min) to	o 210 ^o C (25 ^o /min), 2	20°C/min to 3	10°C (3	3 min)	
7. 8.	Vinclozoline Prometryne		Injection:	Splitless, 250°	C, purge flow 50m	/min at 1min.	. aas sa	aver 80ml/min on a	at 3 min
9.	Bromacil		-	•			-		
10.	Malathion		MSD:	Transfer Line	290 ^o C , Source 300	⁰ C, Quad 180	0°C		
11.	Thiazopyr								
12.	Dursban	1	2	2	6		23	25	30
13.	Benthiocarb								
14.	Parathion								
15.	Terbus sulfone								
16.	Bioallethrin				9-14				
17.	Oxychlordane								
18.	Fenamiphos							27	
19.	Nitrophen				8 17				
20.	Norflurazone						24		
21.	Kepone								32
22.	Hexazinone				7			26 28 29	
23.	Triphenyl phosphate				15,16	20		28 29	
24.	Bifenthrin				۱۵, ۱۵ بلم	20			
25.	Chrysene-D12			3		12	21		33
26.	BDE-47			$\boldsymbol{\lambda}$					34
27.	Mirex			IN IN		18			
28.	BDE-100			4,5					31
29.	BDE-99					19			
30.	Perylene-D12						22		
31.	Fenvalerate								
32.	Esfenvalerate								mal VU Landland
33. 34.	Hexabromobiphenyl BDE-153	ment harmound	n-n		I have been been how	and Samanad Samanada S	ما من الم من المرسية المرسية الم	A A MANAGEMENT & CONTRACT OF	
54.	DDE-133			. <u>, , , , , , , , , , , , , , , , , , ,</u>					
		5.00	6.00	7.00 8.00	9.00	10.00	11.00	12.00	13.00

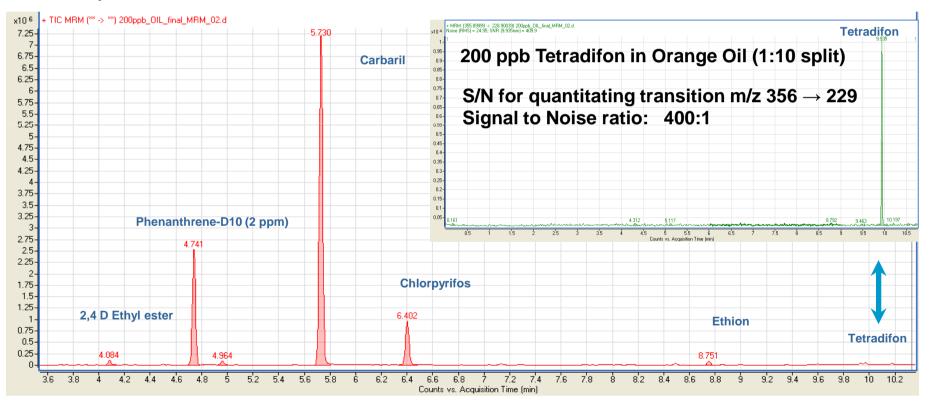
Agilent Technologies

Drugs of Abuse


Column:	DB-5ms Ultra Inert 30 m x 0.25 mm x 0.25 µm (Agilent part # 122-5532UI)
Carrier:	Helium 43.8 cm/sec constant flow
Oven:	120% C (2min) 20 % C/min to 180 % C (6 min hold), 18 % C /min to 270% C (2min),
	25 % C/min to 325% C (2 min)
Inlet:	split 30:1, ~ 1 ng on column 250 %C, single taper liner (Agilent # 5181-3316)
MSD:	transfer line 300 % C, source 280 % C, quad 200 % C, full scan m/z 50-450

Agilent Technologies

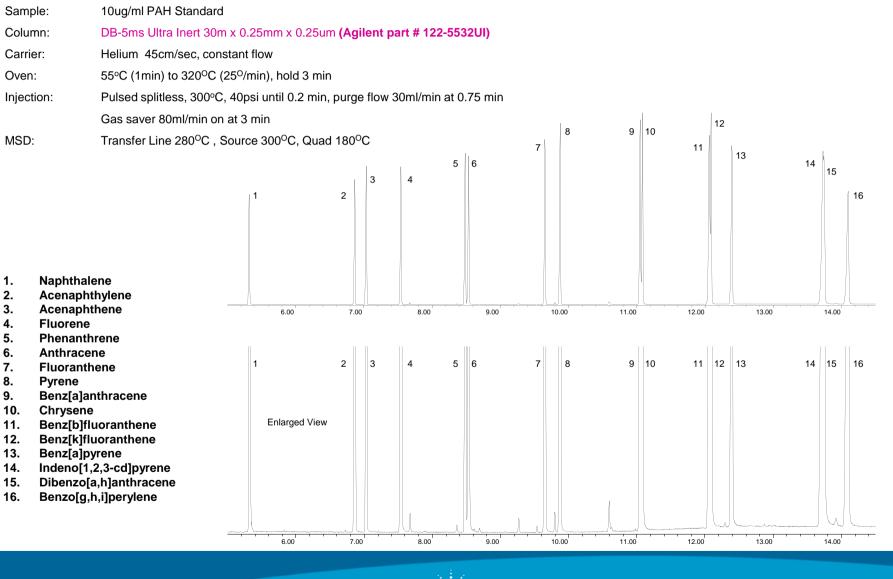
Bezodiazepines



Agilent Technologies

Pesticides in Orange Oil

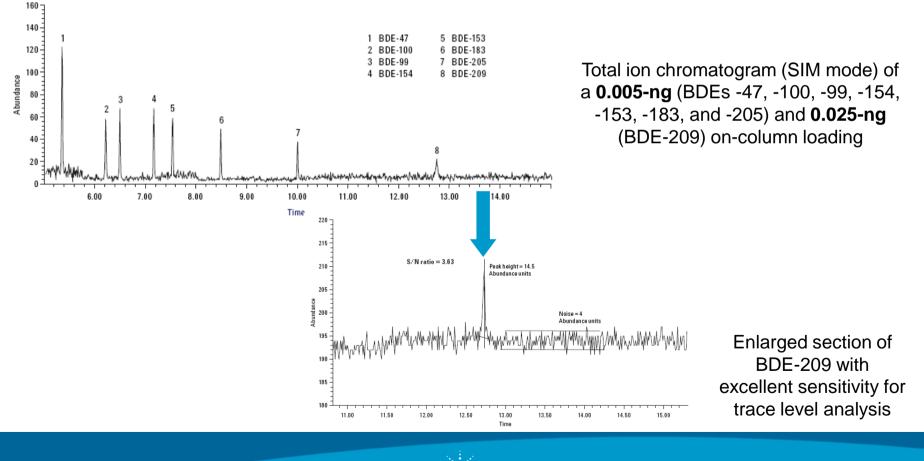
Analysis was carried out on the Agilent 7890A/5975 GC/MS or 7890A/7000 GC/MS/MS equipped with either a 7683 or 7683B Series ALS, split/splitless injection port and triple-axis detector. An Agilent J&W DB-5ms Ultra Inert 15 m x 0.25 mm x 0.25 um column (Agilent part # 122-5512UI) was used. The initial GC oven temperature was 70° C, which was held for 0.67 minutes. The oven was then ramped by 75° C/minute to 150° C, held for 0 minutes and ramped by 9° C/minute to 200° C and held for 0 minutes before ramping by 24° C/minute to 280° C and holding for 3 minutes. A six-minute post-run at 320° C was used. Pressure was held constant at 10 psi throughout the run and a split ratio of 10:1 for a 1uL injection. An open ended 4 mm helical liner was used (Agilent #5188-5396). The inlet temperature was 250° C and transfer line was set to 280° C. In the case of both detectors the source temperature was set to 300° C and the analyzer to 180° C.



Agilent Technologies

PAH Analysis

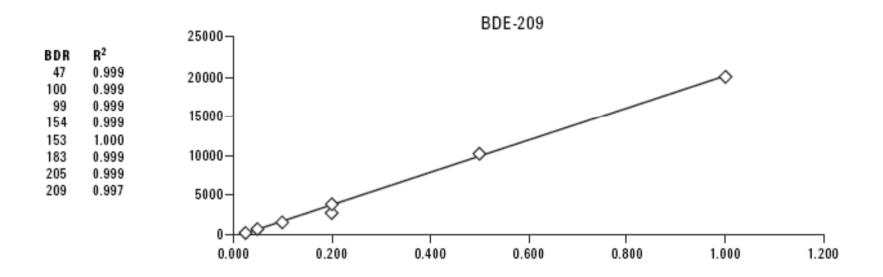
GC/MSD Conditions



PBDE Analysis

GC/MS conditions

Column:	DB-5ms Ultra Inert 15 m × 0.25 mm × 0.25 μm (Agilent part # 122-5512UI)
Carrier:	Carrier Helium 72 cm/s, constant flow
Oven:	150 to 325 °C (17 °C/min), hold 5 min
Injection:	Pulsed splitless; 325 $^{\circ}$ C, 20 psi until 1 .5 min, purge flow 50 mL/min at 2.0 min
MSD:	Source at 300 °C, Quadrupole at 150 °C, transfer line at 300 °C, scan range 200–1000 amu



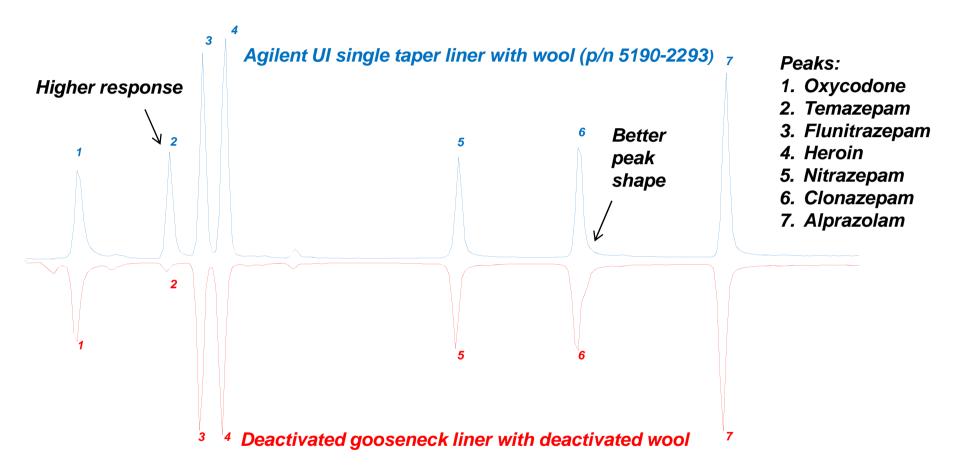
PBDE Analysis

GC/MS conditions

Column:	DB-5ms Ultra Inert 15 m × 0.25 mm × 0.25 µm (Agilent part # 122-5512UI)
Carrier:	Carrier Helium 72 cm/s, constant flow
Oven:	150 to 325 ℃ (17 ℃/min), hold 5 min
Injection:	Pulsed splitless; 325 °C, 20 psi until 1 .5 min, purge flow 50 mL/min at 2.0 min
MSD:	Source at 300 °C, Quadrupole at 150 °C, transfer line at 300 °C, scan range 200–1000 amu

Linearity is excellent across the range studied (0.5 ng/mL to 1,000 ng/mL, except for BDE-209 at 2.5 to 1,000 ng/mL range), giving R² values of 0.997 or greater in all cases and demonstrating highly inert surface of the column.

We Have the Most Inert Column, What about the **Rest of the Flow Path??**


Ultra Inert Liners

6 April 2011

Basic Drug Suitability

Drug of abuse are shown on GC/MS SIM chromatograms 5 ng of checkout standards on column

Agilent Technologies

Ultra Inert GC Inlet Liners Objective:

Equivalent or <u>Better</u> performance for :

Response Levels: <u>Highly inert surface</u> for recovery at <u>trace levels</u>

Robustness: Stability of deactivation over time

Reliability: <u>Reproducibility</u> and linearity

Even when <u>containing glass wool</u>, Agilent **Ultra Inert GC liners** provide a robust, reproducible and reliable inert flow path for the analysis of difficult, <u>active compounds at trace levels</u>.

Agilent Technologies

NPT: Ultra Inert Liners March 2011

Reliability / Quality Assurance : Ultra Inert Liner Certificate of Performance

Lot to Lot Liner Reproducibility assured:

Each deactivation lot is Certified to ensure consistent and efficient coverage using both acidic and basic probes at trace (2 ng) levels on column

Certificate with every liner is printed on a label ready to peel and stick into analysts' laboratory notebooks for easier compliance.

Traceability: Deactivation Lot number is on Certificate Liner lot number (and part number) is permenantly etched on glass

Agilent Technologies

Take Home Message

- Raising the bar and setting a new industry standard for column inertness QC testing
- Best columns available for reactive analytes and trace analysis
 - Carefully selected Ultra Inert test mix for consistent column inertness
 - Excellent performance over a wide range of applications
 - Quality innovation to ensure the right answer the 1st time
 - Selectivity remains the same for consistent predicable separation
 - Low bleed profiles minimize interferences
- New Inert Liners to keep the entire flowpath INERT
- The bottom line
 - Highest and most consistent inertness performance

www.agilent.com/chem/ultrainert

Agilent Technologies

References

- 1. US EPA Method 8270D Revision 4 February 2007 "Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)"
- K. Grob Jr., G. Grob, and K. Grob "Comprehensive, Standardized Quality Test for Glass Capillary Columns," *Journal of Chromatography A*, Vol. 156, Issue 1, 21 August 1978, Pages 1-20
- Mitch Hastings, Allen K. Vickers, and Cameron George "Inertness Comparison of Sample of 5% Phenyldimethylpolysiloxane Columns," Poster Presentation, 54th Annual Pittsburg Conference, Orlando, FL March 2003
- 4. Jim Luong, Ronda Gras, and Walter Jennings "An Advanced Solventless Column Test for Capillary GC Columns," *J. Sep. Sci.*, 2007, 30, 2480-2492
- 5. Mike Szelewski and Bill Wilson, "Improvements in the Agilent 6890/5973 GC/MSD System for Use with USEPA Method 8270," Application Note 5988-3072EN, November 7, 2001

Agilent/J&W Technical Support

800-227-9770 (phone: US & Canada)*

* Select option 3..3..1

866-422-5571 (fax)

email: gc-column-support@agilent.com

www.agilent.com/chem

Agilent Technologies