Introduction to Capillary GC

Agilent Technologies

Typical GC System

Oven

Agilent Technologies

Carries the solutes down the column

Selection and velocity influences efficiency and retention time

Agilent Technologies

VAN DEEMTER CURVES

Excess diffusion

Agilent Technologies

CARRIER GAS

Туре	Velocity Range (u _{opt} – OPGV)
Nitrogen	8-16
Helium	20-40
Hydrogen	30-55

 μ_{opt} Opimal Carrier Gas Velocity

OPGV Optimal Practical Gas Velocity 1.5-2 times the μ_{opt}

Agilent Technologies

SAMPLE INJECTION

Goals:

Introduce sample into the column

Reproducible

No efficiency losses

Representative of sample

Sample Introduction

Purpose: To introduce a representative portion of sample onto the column in a reproducible manner, while minimizing sample bandwidth

Syringe Injection Autosampler injection

Valve Injection

- Gas sampling valve
- Liquid sampling valves

Objective: The sample must not be chemically altered, unless desired (e.g., derivatization). Success is no contamination, degradation, or discrimination.

Types of Inlets

Purged Packed

Split / Splitless

Cool On Column

Programmable Temperature Vaporization

Volatiles Interface

Multi Mode Inlet

SPLIT/SPLITLESS INJECTOR

Flow through injector = Column flow + Split Vent Flow

Agilent Technologies

Splitless Injector Purge Off At Injection

Agilent Technologies

Splitless Injector Purge On After Injection

DETECTORS

Purpose:

Responds to some property of the solutes Converts the interaction into a signal Immediate Predictable

Detectors

Detector	Dynamic Ra	ange	MDL			
TCD	10 ⁵	Universal	400 pg Tridecane			
FID	10 ⁷	Responds to C-H bonds	1.8 pg Tridecane			
ECD	5x10 ⁵	Responds to free electrons	6 fg/mL Lindane			
NPD	10 ⁵	Specific to N or P	0.4 pgN/s 0.06 pg P /s			
FPD	10³S, 10⁴P	Specific to S or P	60 fg P/s 3.6 pg S/s			
SCD	10 ⁴	Specific & Selective to S	0.5 pg S/s			
NCD	10 ⁴	Specific & Selective to N	3 pg N/s			
MSD		Universal	S/N 400:1 1 pg/uL OFN			

DATA HANDLING

Converts the detector signal into a chromatogram

- Integrator
- Software Program

COMPOUND REQUIREMENTS FOR GC

Only 10-20% of all compounds are suitable for GC analysis

The compounds must have:

- ✓ Sufficient volatility
- ✓ Thermal stability

<u>NO</u> Inorganic Acids and Bases Be mindful of salts!

Typical Capillary Column

Agilent Technologies

CAPILLARY COLUMN TYPES

Porous Layer Open Tube (PLOT)

WCOT Column Types

Agilent J&W has over 50 different stationary phase offerings

	Low Polarity			Mid Polarity			High Polarity	
CP-Sil 2	DB &	DB &	DB-XLB	DB-225ms	DB-ALC1	HP-88	DB-WAX	CP-TCEP
DB-MTBE	HP-1ms UI	HP-5ms UI	VF-Xms	DB-225	DB-Dioxin	CP-Sil 88	DB-WAXetr	
CP-Select	DB & HP-1ms	DB & HP-5ms	DB-35ms UI	CP-Sil 43 CB	DB-200	DB-23	HP-INNOWax	
CB MTBE	VF-1 ms	VF-5ms	DB &	VF-1701 ms	VF-200ms	VF-23 ms	VF-WAXms	
	DB & HP-1	DB & HP-5	VF-35ms	DB-1701	DB-210		CP-Wax	
	CP-Sil 5 CB	CP-Sil 8 CB	DB & HP-35	CP-Sil 19 CB	 DX-4		57 CB	
	Ultra 1	Ultra 2	DB &	HP Plood			DB &	
	DB-1ht	VF-DA	VE-1/ms	Alcohol			HP-FFAP	
	DB-2887	DB-5.625	DB-17	DB-ALC2			DB-WAX FF	
	DB-Petro/	DB & VF-5ht	HP-50+	 DX-1			CP-FFAP CB	
	PONA	CP-Sil PAH	DB-17ht				CP-WAX	
	CP-Sil	CB	DB-608					
	PUNA CB	Select	DB-TPH				52 CB	
	DB-HT SimDis	Biodiesel	DB-502.2				CP-WAX 51	
	CP-SimDis	SE-54	HP-VOC				CP-Carbowax	
	CP-Volamine		DB-VRX				400	
	Select		DB-624				Carbowax 20M	
	Mineral Oil		VF-624ms				HP-20M	
	HP-101		CP-Select					
	SE-30		624 CB				GAIVI	
			DB-1301					
			VF-1301ms					
			CP-Sil 13 CB					

SEPARATION PROCESS

Agilent Technologies

TWO PHASES

Solute molecules distribute into the two phases

Agilent Technologies

DISTRIBUTION CONSTANT (K_C)

$N_{C}^{@} = \frac{\text{conc. of solute in stationary phase}}{\text{conc. of solute in mobile phase}}$

 $K_{\rm C}$ formerly written as $K_{\rm D}$

Agilent Technologies

SOLUTE LOCATION

In stationary phase = Not moving down the column

In mobile phase = Moving down the column

Agilent Technologies

SEPARATION PROCESS Movement Down the Column

Agilent Technologies

K_C AND PEAK WIDTH Time of Elution

THREE PARAMETERS THAT AFFECT K_{C}

Solute:

different solubilities in a stationary phase

Stationary phase: different solubilities of a solute

Temperature: K_{C} decreases as temperature increases

RETENTION TIME t_r

Time for a solute to travel through the column

Agilent Technologies

ADJUSTED RETENTION TIME t_r'

Actual time the solute spends in the stationary phase

$$t_r' = t_r - t_m$$

 t_r = retention time t_m = retention time of a non-retained solute

Agilent Technologies

 $\dot{t'_r} = 4.41 - 1.25$ $\dot{t'_r} = 3.16$ min = time spent in stationary phase

TIME IN THE MOBILE PHASE

All solutes spend the same amount of time in the mobile phase.

Agilent Technologies

RETENTION FACTOR (k)

Ratio of the time the solute spends in the stationary and mobile phases

t_r = retention time t_m = retention time of non-retained compound Formerly called partition ratio; k'

Agilent Technologies

RETENTION FACTOR (k)

Relative retention

Linear

Factors out carrier gas influence

Agilent Technologies

PHASE RATIO (β)

$$\beta = \frac{u}{5g_i}$$

r = radius (μm) d_f = film thickness (μm)

Agilent Technologies

DISTRIBUTION CONSTANT (K_c)

$K_c = k\beta$

n
$$@\frac{t_r'}{t_m}$$
 $\beta @\frac{r}{2d_f}$

Agilent Technologies

RANGE OF RETENTION

Agilent Technologies

Fronting : Symmetry >1

Agilent Technologies

PEAK WIDTH

Agilent Technologies

Agilent Technologies

EFFICIENCY Theoretical Plates (N)

Large number implies a better column

Often a measure of column quality

Relationship between retention time and width

THEORETICAL PLATES (N)

N = 5.545
$$\left(\frac{W}{W_h}\right)^2$$

$$t_r$$
 = retention time
 W_h = peak width at half height (time)

Agilent Technologies

EFFICIENCY MEASUREMENT Cautions

Actually, measurement of the GC system

Condition dependent

Use a peak with k>5

Agilent Technologies

ISOTHERMAL VS. TEMPERATURE PROGRAMMING Efficiency

SEPARATION VS. RESOLUTION

Separation: time between peaks

Resolution: time between the peaks while considering peak widths

Agilent Technologies

SEPARATION FACTOR (α)

$$\alpha = \frac{k_2}{k_1}$$

co-elution: $\alpha = 1$

 k_2 = retention factor of 2nd peak k_1 = retention factor of 1st peak

Agilent Technologies

RESOLUTION (Rs)

$$R_{s} = 1.18 \quad \left(\frac{t_{r2} - t_{r1}}{W_{h1} + W_{h2}} \right)$$

 t_r = retention time W_h = peak width at half height (time

Agilent Technologies

RESOLUTION Baseline Resolution: Rs = 1.5

Page 47

Agilent Technologies

Resolution

$R_{s} = \frac{\sqrt{N}}{4} \left(\frac{k}{k+1}\right) \left(\frac{\alpha-1}{\alpha}\right)$

- N = Theoretical plates
- k = Retention factor
- α = Separation factor

INFLUENCING RESOLUTION

Variables:

N: column dimensions, carrier gas

a: stationary phase, temperature

k: stationary phase, temperature, column dimensions

Conclusions

The GC is comprised of an inlet, column and detector that all work together to produce good chromatography

Separation (via K_c) is based on 3 things:

- <u>Solute</u>: different solubilities/interaction in a given stationary phase
- <u>Stationary phase</u>: different solubilities/interaction of a solute (correct column selection is critical!)
- <u>Temperature</u>: K_C decreases as temperature increases

When in doubt, contact Agilent Technical Support!

Additional Recorded –Seminars

http://www.chem.agilent.com/en-US/Training-Events/eSeminars/14736A/Pages/default.aspx

Advanced Topic: Trace Level Analysis for Active Compounds Made Routine with Agilent J&W Ultra Inert Capillary GC Columns

Advanced Topic – Tips and Tricks of Injector Maintenance

Advanced Topic – Practical, Faster GC Applications

Carrier Gases in Capillary GC

Selection of a Capillary GC Column

Secrets of GC Column Dimensions

Techniques for Making Your GC Analysis More Repeatable and Robust

Techniques, Tips and Tricks of Troubleshooting GC Capillary Systems

Practical Steps in GC Method Development

Understanding the Inlets - How to Choose the Right One

Agilent J&W Scientific Technical Support

800-227-9770 (phone: US & Canada)*

* Select option 3..3..1

866-422-5571 (fax)

GC-Column-Support@agilent.com

www.chem.agilent.com

