

New Developments in GC, HPLC and Sample Prep at Supelco

L.M.Sidisky

May 20, 2014 38th ISCC, Riva del Garda, Italy

sigma-aldrich.com/analytical

1

© 2012 Sigma-Aldrich Co. All rights reserved.

SIGMA-ALDRICH[®]

Overview of Presentation

Ionic Liquid Capillary Columns
SPME
Titan HPLC
SPE Developments
Asset Air Sampler
Conclusions

SLB-IL60 Phase Structure

1,12-Di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide

sigma-aldrich.com/il-gc

SLB-IL111 Phase Structure

1,5-Di(2,3-dimethylimidazolium)pentane bis(trifluoromethylsulfonyl)imide

SIGMA-ALDRICH

sigma-aldrich.com/il-gc

Column Selectivity

SLB-IL60, 30 m x 0.25 mm I.D., 0.20 µm (29505-U)

© 2012 Sigma-Aldrich Co. All rights reserved.

SIGMA-ALDRICH®

Column Selectivity

SLB-IL111, 30 m x 0.25 mm I.D., 0.20 µm (28927-U)

Cis/ trans FAMES on SLB-IL60 vs. PEG Type Phase

C18:1n9 cis / trans FAMEs @ 180°C

SIGMA-ALDRICH®

© 2012 Sigma-Aldrich Co. All rights reserved.

C18:1 cis/trans FAME Isomers in Partially Hydrogenated Vegetable Oil (PHVO) SLB-IL111 vs. SP-2560: 100 m columns

Positional cis/trans FAME Isomers

column: SP-2560, 200 m x 0.25 mm I.D., 0.20 µm oven: 180 °C isothermal inj.: 250 °C det.: FID, 250 ° C carrier gas: hydrogen, 1 mL/min. injection: 1 µL, 100:1 split liner: 4 mm I.D., split liner with cup (2051001)

column: SLB-IL111, 200 m x 0.25 mm I.D., 0.20 µm oven: 168 °C isothermal ini.: 250 °C det.: FID. 250 ° C carrier gas: hydrogen, 1 mL/min. injection: 1 µL, 100:1 split liner: 4 mm I.D., split liner with cup (2051001)

PHVO total FAMEs

PHVO total FAMEs on SLB-IL111 @ 150 ° C isothermal

SIGMA-ALDRICH

© 2012 Sigma-Aldrich Co. All rights reserved.

PAHs on SLB-IL 59 20m x 0.18mm x 0.04umd_f

Figure 6. TCL PAHs on SLB-IL 59, 20m x 0.18mm x 0.04umdf, H₂ carrier gas; Expanded views show anthracene/phenanthrene and benzofluoranthene isomers

10

Ionic Liquid Water Separations

Column: SLB-IL 94, SLB-IL 107, SLB-IL 200 30m x 0.25mm x 0.20umd_f Oven: 35°C, 4°C/min to 125°C, 125°(2min) Det: TCD, 300°C Flow Rate: 25cm/sec constant pressure He Inj: 250°C,1uL, split, 100:1 Liner: 4mm ID cup design split liner

Samples: IL Solvent Test Mix: MeOH, EtOH, Acetone, IPA, n-propanol, 1-butanol, 1,4-Dioxin

in water

IL Solvent Mix on SLB-IL 94 30m x 0.25mm x 0.20umd_f

Figure 9. Solvent test standard programmed separation on SLB-IL 94; 1) MeOH, 2) MeCl₂
3) acetone, 4) ethanol, 5) IPA, 6) n-Propanol, 7) 1,4dioxane, 8) butanol
9) water

© 2012 Sigma-Aldrich Co. All rights reserved.

IL Solvent Mix on SLB-IL 107 30m x 0.25mm x 0.20umd_f

Figure 8. Solvent test standard programmed separation on SLB-IL 107; 1) MeOH/MeCl₂,
2) acetone, 3) IPA, 4) ethanol, 5)methanol, 6) n-Propanol, 7) 1,4dioxane
8) butanol, 9) water

© 2012 Sigma-Aldrich Co. All rights reserved.

¹D (sec) – **SLB 5ms** (30 m x 0.25 mm ID x 0.25 µm df)

Equipment: LECO PEGASUS GC × GC/TOFMS. Carrier gas: Helium set @ 1.0 mL/min. Sample: 1 µL, split ratio 50:1, inlet temp. 250 °C. GCxGC method temp. program: Primary column: 40 °C (2 min), ramped @ 4 °C/min to 270 °C (20min). Secondary column: 55 °C (2 min), ramped @ 4 °C/min to 280 °C (20min). Modulator temp. offset: 30 °C. Modulation Period: 3 s. TOFMS method parameters: mass range 35–450 m/z., acquisition rate 200 spectra/s, ion source temp. 250 °C.

POLAR – NON-POLAR STRATEGY *Biodiesel 20* Faster analysis without losing resolution

Equipment: LECO PEGASUS GC × GC/TOFMS. Carrier gas: Helium set @ 1.2 mL/min. Sample: 1 µL, split ratio 50:1, inlet temp. 250 °C. GCxGC method temp. program: Primary column: 60 °C, ramped @ 10 °C/min to 225 °C (5 min). Secondary column: 75 °C, ramped @ 10 °C/min to 240 °C (5 min). Modulator temp. offset: 30 °C. Modulation Period: 3 s. TOFMS method parameters: mass range 35–450 m/z., acquisition rate 200 spectra/s, ion source temp. 250 °C.

© 2012 Sigma-Aldrich Co. All rights reserved.

Goals of Development of SPME Fibers for Solvent Desorption

Fiber coating must be durable and reproducible Fiber coating must not swell in water or organic solvents To coat HPLC particles on fiber the Binder

- should <u>not affect</u> uptake of analytes
- should be biocompatible
 - Resists large (macro)molecules
 - For in-vivo type experiments without harm to organism

Device needs to be affordable e.g. for single use analysis

Single Use Biocompatible Fiber Probes for *in-vivo* Analysis

SIGMA-ALDRICH®

© 2012 Sigma-Aldrich Co. All rights reserved.

Fiber Pipette Tips

SIGMA-ALDRICH°

© 2012 Sigma-Aldrich Co. All rights reserved.

Fiber Tip for HPLC Analysis

19

SIGMA-ALDRICH®

SPME fiber Holder with Automated DESI-1D Source

Courtesy of Joseph Kennedy of Prosolia

SIGMA-ALDRICH®

Evolution of HPLC Column and Particle Technology

Sub- 2 µm spherical Particles have made steady porous particles and advances in the following areas: core-type particles Morphology (shape) Purity Size distribution HPLC () UHPLC 3-4 µm Separation Efficiency spherical porous particles Type B Silica and 5-10 µm Hybrid Silica spherical porous particles "there is strong correlation between Type A Silica particle size distribution of the packings Large granular and the quality (of the column)". porous particles Desmet, et. al., J. of Chrom. A, 1217 (2010), 7074-7081. 1960-70 **Technology Advances** 2000-2013

21

Introduction to Titan[™] UHPLC Columns

High Purity Monodisperse Silica Particles from Supelco

Supelco HPLC and UHPLC particles feature very narrow PSD

© 2122 Sigma-Aldrich Co. All rights reserved.

SIGMA-ALDRICH®

Fused-Core Monodispersity was the Key Advantage

Slide courtesy of AMT

*

© 2128 gma-Aldrich Co. All rights reserved.

SIGMA-ALDRICH®

Titan Porous Silica- Narrow PSD Like Fused-Core

 D_s (90/10) = particle size at 0.9 divided by particle size at 0.1; scale units arbitrary.

Ecoporous process results in very narrow distribution ($D_{90/10} < 1.15$) without additional sizing.

Size Distribution Comparison for Range of Silicas

SIGMA-ALDRICH®

Evidence for the Monodispersity Advantage

SIGMA-ALDRICH[®]

Titan C18 Performance Comparison in MeOH

Titan C18 Performance Comparison in ACN

SIGMA-ALDRICH®

Conclusions

- A new process called Ecoporous[™] has been developed for making porous silica that matches the narrow size distribution of Fused-Core particles; no extra sizing step is required; no silica is wasted; a new standard has been established.
- Particles with 80 Å pores and 410 m²/g have been prepared in 1.9 µm with a 6% standard deviation in PSD; larger pores and a range of particles sizes can be created by the process.
- Efficiency matches or exceeds porous particles of 1.7 and 1.8 µm size while pressure drop for the larger Titan particle is lower.
- Titan[™] C18 columns with uniform particles are stable over a range of UHPLC flow, pressure and mobile phase conditions.
- Higher sample loads can be injected without loss of efficiency.
- Titan columns are designed for enhanced performance with UHPLC instruments having very low dispersion and fast detection.

HybridSPE-Phospholipid (HybridSPE-PL)

96-well SPE plates and cartridges Zirconia-coated silica particles

Features:

- Selective removal of phospholipid interferences and precipitated proteins
- Simple 2-3 step procedure

Benefits

- Improved LC-MS sensitivity (reduced matrix effect)
- Enhanced column lifetime
- Gradients not needed to clean column

SIGMA-ALDRICH®

Monitoring Phospholipid Contamination

- PLs major component of cell membranes
- Polar head group, non-polar tail
- Largest subclass (phosphatidylcholine) monitored using m/z 184 or m/z 104 fragment ions
- Used as a marker for ion-suppression risk assessment during LC-MS/MS
- Determine selectivity effectiveness of sample prep technique

SIGMA-ALDRICH

Problem: Protein and Phospholipid Accumulation on HPLC Column

HPLC column: Sub-2um C18, 5 cm x 2.1 mm I.D.

SIGMA-ALDRICH

Solution: Phospholipids Selectively Removed using HybridSPE-PL Technology

- The Zr atom on the particle acts as a Lewis acid
- The phosphate groups on the phospholipids are strong Lewis bases and complex with the zirconium atoms
- Analytes are eluted free of phospholipids

HybridSPE-PL Method (96-Well Format)

of proteins and phospholipids, ready for LC-MS

Improved Situation: No Protein or Phospholipid Accumulation Using HybridSPE-PL

Improved Through-put with HybridSPE-PL

Elimination of need for post-gradient HPLC column clean-up improves sample throughput

SIGMA-ALDRICH®

Overlay of HybridSPE-Small Volume and Protein Precipitation Samples

Methadone and metabolites from plasma

Sample was extracted using HybridSPE-PL small volume (20 uL of plasma was used) or standard PPT (100 uL of plasma was used)

High concentration (1200 ng/mL), still shows suppression with standard ppt method

37

HybridSPE-PL Technology

- Fast and convenient SPE method uses Interference Removal strategy
- Complete removal of precipitated proteins and phospholipids for analysis of pharmaceutical compounds
- Reduces matrix effects, improves HPLC column lifetime and method throughput
- Can be used to extract and concentrate phospholipids in lipidomics application

For more information, please visit sigma-aldrich.com/hybridspe-pl.

SIGMA-ALDRICH

QuEChERS Method: Pesticides in Food

SIGMA-ALDRICH®

© 2012 Sigma-Aldrich Co. All rights reserved.

QuEChERS Method: the choice of sorbents

interference	PSA	C18	C18/PSA	ENVI- Carb	ENVI- Carb/PSA	PSA/C18/ ENVI-Carb	Z-Sep	Z-Sep+	Z-Sep/C18
Fats		Х	Х			Х	X	X	X
Pigments	Х			Х	Х	Х	X	X	X
Sugars	Х		Х		Х	Х			
Acids	Х		Х		Х	Х			

New choice of cleanup sorbents for Fat-containing and pigmented samples:

- Supel Que Z-Sep for hydrophobic analytes
- Supel QuE Z-Sep/C18 (Discovery[®] DSC-18 + Z-Sep) for samples containing <15% fat
- Supel QuE Z-Sep+ (C18 and zirconia dual bonded to silica) for samples containing >15% fat

Analysis of avocado extracts

Scan mode

41

A New Dry Sampler for Isocyanates

© 2012 Sigma-Aldrich Co. All rights reserved.

SIGMA-ALDRICH[®]

Existing methods for isocyanate sampling and analysis

Method	DBA (Dibutylamine)	1-2PP (1-(2-pyridyl piperazine))	2-MP or MOPP (2- methyoxyphenyl piperazine)	MAP (9-(1-methyl anthracenyl piperzine))	MOPIP and MAMA (9-(N- methylaminomethyl) anthracene)
Media type	Filter - ASSET NCO	Filter	Impinger	Impinger + GFF	ISO-CHEK Filter System
lsocyanates	2,4 TDI; 2,6-TDI, MDI, IPDI, HPDI, PhI, ICA, MIC, PIC, EIC; HMDI; HDI Adducts	2,4; 2-6 TDI. HDI; or MDI only	2,4-TDI; 2,6-TDI, MDI, HDI, NDI, HMDI, IPDI	2,4-TDI; 2,6-TDI, MDI, HDI, NDI, HMDI, IPDI	2,4-TDI; 2,6-TDI, HDI, IPDI, MDI, HMDI
Ease of Use	No field reagent addition; no field extraction; stable	Easy	Personal sampling not recommended	Personal sampling not recommended	15 min sampling time; requires field derivitization; may require field reagent addition depending on system purchased
Storage	No storage issues	Refrigerate before use	Refrigerate	Refrigerate	MAMA Reagent Light- Sensitive
Sample Prep	Evaporate; recover	Evaporate; recover	Evaporate; recover	Evaporate; recover	Short sample prep time
Results	Quantifies aromatic and aliphatic isocyanates with LC- MS, MS/MS at low detection limits	LC-UV; Underestimates concentrations; incomplete derivatization	Difficulty identifying oligomeric isocyanates	Quantifies polyisocyanates w/LC-UV; Derivatives unstable; artifact peaks	Cannot collect is ocyanates and then derivatize in solution; pre-polymers may react on first filter; complicated review of results - correction factors required

Dry Sampler - ASSET™EZ4-NCO

About the size and weight of a fat pen

Connects to Air Sampling Pump

44

Dibutylamine (DBA) Impregnated Media

Vapor phase isocyanates are collected in the denuder

Derivatization Reaction

The isocyanate particles are collected on the filter

45

Dibutylamine as the Derivative Agent

Advantages

- DBA reacts quickly with the isocyanates
- The derivatives are stable
- No special storage of the sampler is required
- No field extraction of the sampler required
- DBA evaporates during Sample Prep.

Disadvantage

 DBA doesn't contain a UV chromophore so it doesn't enhance the LC-UV response of the isocyanates. ⇒ requires LCMS analysis

ASSET EZ4-NCO Dry Sampler for Isocyanates

Flow Rate Range 100-250 mL/min (200 mL/min suggested)

Low back-pressure (suitable for most air sampling pumps)

- ~9 inches of water @ 200 mL/min

Sampling Time Range 5 min. to 8 h (15 minutes is typical)

After sampling,

- Put the caps back on the sampler & send to lab
- ASSET can be stored at room temp. at any time

Analysis by LC-MS

Calibration Standards are available

- Calibration solution
- Deuterated Internal Standard Solution
- Kit containing both sets of standards

HDI adducts standards are now available, polymeric MDI Standards will be released in the next few weeks

sigma-aldrich.com/asset

SIGMA-ALDRICH°

ASSET EZ4-NCO Dry Sampler

Provides more reliable results due to permanent derivatisation of isocyanates both in the vapour and particulate phase. More stable derivative - Easier used and handling Suitable for sampling of various Isocyanates

Aliphatic monomers:

Ethyl isocyanate (EIC)
Isophorone diisocyanate (IPDI)
Hexamethylene diisocyanate (HDI)
Methyl isocyanate (MIC)
Propyl isocyanate (PIC)

•Isocyanic acid (ICA)

Aromatic monomers:

•4,4'-Methylenediphenyl diisocyanate (MDI)

•Phenyl isocyanate (PhI)

•2,4-Toluene diisocyanate (2,4-TDI)

•2,6-Toluene diisocyanate (2,6-TDI)

SIGMA-ALDRICH

Acknowledgements

Prof. Daniel Armstrong, U. Texas Arlington Prof. Luigi Mondello, U. Messina, Messina, Italy Dr. Pierluigi Delmonte, US FDA Supelco R&D Team Our customers worldwide

