

Hydrocarbons, C_1 - C_6 Analysis of natural gas

Application Note

Energy & Fuels

Authors

Agilent Technologies, Inc.

Introduction

The separation of natural gas can be done very well on an Agilent CP-SilicaPLOT column. The 0.53 mm id column is ideal for using the direct injection technique. Due to the high separation factor between methane and ethane, we obtain a very narrow methane peak even with direct injection. Branched paraffins elute before the linear paraffin of the same carbon number. The mechanical stability of the CP-SilicaPLOT column is very high. This also allows applications with valve switching, high flow rates and backflush techniques.

Conditions

Technique	:	GC-wide-bore
Column	:	Agilent CP-SilicaPLOT, 0.53 mm x 30 m, fused silica PLOT CP-SilicaPLOT (df = 6 $\mu m)$ (Part no. CP8570)
Temperature	:	50 °C (5 min) \rightarrow 225 °C, 5 °C/min
Carrier Gas	:	He, 20 kPa (0.2 bar, 2.9 psi)
Injector	:	Direct T = 225 °C
Detector	:	FID T = 250 °C
Sample Size	:	2 µL

Peak identification 1 2 3

www.agilent.com/chem

This information is subject to change without notice. © Agilent Technologies, Inc. 2011 Printed in the USA 31 October, 2011 First published prior to 11 May, 2010 A01354

Agilent Technologies