Analysis of Organophosphorus Pesticides with Agilent 7820 Gas Chromatograph/ Flame Photometric Detector

ENVIRONMENTAL

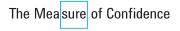
The Agilent 7820 series gas chromatograph (GC) equipped with a flame photometric detector (FPD) provides high sensitivity, good linearity, and stability for the analysis of organophosphorus pesticides.

Synthetic organic pesticides are widely used in modern agriculture to protect crops and improve production. However, these compounds are very toxic when absorbed by human organisms because of acetylcholinesterase deactivation. Maximum residue levels (MRLs) have been regulated for 27 OPs in different kinds of agricultural products, and analytical methods have been developed to avoid any adverse impact on public health.

The Agilent 7820 series gas chromatograph (GC) equipped with a flame photometric detector (FPD) provides high sensitivity, good linearity, and stability for the analysis of organophosphorus pesticides. The results achieved are better than the requirements of the Chinese agriculture industry standard NY T 761.1-2004 [1].

Experimental

Table 1. Analytical Conditions


Inlet	Split/Splitless inlet						
Inlet temperature	220 °C						
Injection mode	Splitless						
Injection volume	1 µL						
Purge time	0.75 minutes						
Column	DB-1701P, 0.32 mm × 30 m, 0.25 µm (p/n 123-7732)						
Carrier gas	He, 4 mL/min constant flow						
Oven program	100 °C, no hold; 25 °C/min to 150 °C, no hold; 5 °C/min to 250 °C, hold 5 minutes						
Detector	FPD at 250 °C in Phosphorus mode						
Detector gas	H ₂ 75 mL/min Air 100 mL/min Makeup N ₂ 60 mL/min						

Data analysis system Agilent Chemstation

es das chromatodranh

Key Benefits

- The Agilent 7820 GC-FPD provides high sensitivity for the analysis of organophosphorus pesticides.
- ALS and EPC ensure good repeatability and ease of use.
- Agilent Chemstation software is available for the Agilent 7820 system control and data analysis.

Results and Discussion

The Agilent 7820 GC-FPD provides high sensitivity for trace pesticide analysis. Figure 1 shows the chromatogram of 10 μ g/L pesticides using an Agilent 7820 GC-FPD with excellent signal to noise (S/N). Table 2 shows good linearity with R² > 0.999 for most compounds in the range of 10–1,000 μ g/L, which suggests that the 7820-FPD is well suited for low-level OP quantification. The MDLs (S/N = 3) are much lower than the maximum residue levels (MRLs) for the OPs [2].

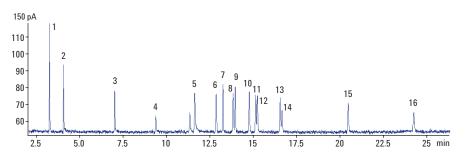


Figure 1. Chromatogram of 16 OPs at 10 µg/L using an Agilent 7820 GC-FPD.

Table 2. MDL (S/N = 3) and Linearity Ranged from 10 to 1,000 μ g/L

	Compound Name	MDL (µg/L)	Linearity range(µg/L)	Linearity R ²		
1	Dichlorvos	1.0	10-1,000	1		
2	Methamidophos	1.5	10-1,000	0.9991		
3	Acephate	2.4	10-1,000	0.9992		
4	Omethoate	6.2	10-1,000	0.9977		
5	Dimethoate	2.5	10-1,000	0.9997		
6	Chlorpyrifos	2.4	10-1,000	0.9997		
7	Methyl parathion	2.2	10-1,000	0.9997		
8	Malathion	2.4	10-1,000	0.9997		
9	Fenitrothion	2.1	10-1,000	0.9998		
10	Isofenphos-methyl	2.3	10-1,000	0.9998		
11	Quinalphos	2.8	10-1,000	0.9997		
12	Isocarbophos	2.6	10-1,000	0.9997		
13	Methidathion	2.6	10-1,000	0.9993		
14	Profenofos	3.9	10-1,000	0.9992		
15	Triazophos	3.3	10-1,000	0.9984		
16	Phosalone	4.3	10-1,000	0.9978		

The use of an automatic liquid sampler (ALS) and EPC ensure the ease of use of an Agilent 7820 GC-FPD and its good repeatability. As shown in Table 3, the relative standard deviation (RSD) of the retention time (RT) of the 16 OPs was lower than 0.013%. Peak areas were reproducible with an RSD of less than 4% at the concentration of 0.200 mg/L. Good RT and peak area repeatability ensure reliable qualitative and quantitative analysis.

Peak number	0.050 mg/L Area RSD%	RT RSD%	0.200 mg/L Area RSD%	RT RSD%
1	1.87%	0.009%	0.71%	0.008%
2	2.67%	0.011%	2.27%	0.007%
3	3.79%	0.023%	3.57%	0.008%
4	6.51%	0.016%	3.27%	0.008%
5	2.99%	0.009%	1.91%	0.011%
6	1.71%	0.009%	0.76%	0.008%
7	2.64%	0.007%	1.34%	0.009%
8	2.03%	0.007%	0.86%	0.010%
9	1.94%	0.012%	0.93%	0.008%
10	2.20%	0.012%	1.36%	0.008%
11	3.02%	0.007%	1.23%	0.013%
12	4.05%	0.012%	1.71%	0.007%
13	3.77%	0.006%	1.73%	0.009%
14	5.01%	0.013%	2.64%	0.012%
15	6.35%	0.007%	3.13%	0.010%
16	5.52%	0.012%	2.92%	0.011%

 Table 3.
 Reproducibility of Peak Area and Retention Time (n = 10)

An apple was used as an example to demonstrate the applicability of the Agilent 7820 GC-FPD for the OPs residue analysis (Figure 2). Recovery of 16 OPs at spiked level of 0.2 mg/kg ranged from 83% to 106% (Table 4). The sample preparation method refers to standard NY_T 761.1-2004.

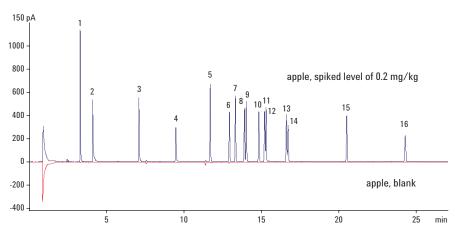


Figure 2. Chromatogram of 0.2 mg/kg spiked sample and blank sample.

Table 4. Recovery of 16 OPs at Spiked Level of 0.2 mg/kg

Peak number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Recovery (%)	91	83	100	106	102	96	96	96	95	95	94	97	92	97	94	100

Conclusions

The Agilent 7820 Series GC with an FPD can be used for sensitive and selective measurement of OPs. The FPD detector provides good linearity and repeatability for most of these phosphorus containing compounds in the low concentration range from 10–1,000 ppb.

References

- 1. NY_T 761.1-2004, Determination method for multi organophosphorus pesticides in vegetables and fruits.
- 2. Jiming Ye *et al*, Introduction of maximum residues limits in China, (2000) Pesticide Science and Management.

Learn more: www.agilent.com/chem Email: info_agilent@agilent.com Find a customer center in your country: www.agilent.com/chem/contactus

This information is subject to change without notice.

© Agilent Technologies, Inc. 2011 Published in USA, December 15, 2011 5990-9590EN

Agilent Technologies