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Introduction
Complex mixtures create challenges for calculating risk exposure and determining environmental 
remediation, necessitating streamlined analytical workflows for detailed compositional 
identification. 
Analysis of heavy fuel oil (HFO) and a mixture of common persistent organic pollutants (POP) was 
performed by comprehensive two-dimensional gas chromatography (GCxGC) combined with 
high-resolution time-of-flight mass spectrometry (HRTOFMS) in multiple ionization modes: electron 
ionization (EI), positive chemical ionization (PCI), and electron capture negative chemical 
ionization (ECNI). Deconvoluted EI spectra from individual chromatographic peaks were matched 
to commercial libraries, with hits ranked by an identification grading system based on criteria 
including mass accuracy of both molecular ions when present and chemically possible fragment 
ions. Complementary information from PCI and ECNI were used to further confirm molecular 
formula of individual compounds and leverage scaled mass defect plots to target 
chromatographic areas of interest.

Piecing Together Pollutant Profiles: Combining High-Resolution MS From Multiple Ionization Modes 
With Multidimensional GC for Petroleum Forensics and Environmental Analyses

Petroleum Forensics
Goals: Identify biomarkers and thermal maturity markers such as hopanes, steranes, and 
dibenzothiophenes, whose ratios assist in tracing source of heavy fuel oils.

Figure 8: Mass defect plot generated from ECNI data allows for targeting groups of compounds like these PCB congeners displayed onto the 
contour plot. Regions of interest can then be targeted to find specific analytes using the highlighted masses; table reflects resulting PCB 
congeners identified with a S/N of greater than 20.
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Figure 1: Generalized workflow for working through GCxGC High-Resolution Data.

Figure 2: Pegasus® HRT+4D with Multi-Mode Ionization source, which provides ability to analyze samples in 
EI, PCI, and ECNI modes without venting or other manual hardware changes, preserving chromatographic 
correlation between modes.

Figure 3: Total Ion Chromatogram of heavy fuel oil illustrates the complexity of the matrix and the benefits of 
multidimensional chromatography for class separation of peaks.

Figure 4: Extracted Ion Chromatogram of heavy fuel oil plotting characteristic mass fragment for hopanes and 
steranes reveals regions of interest for these biomarkers.

Figure 5: Colorized mass defect plot of the PCI data from heavy fuel oil allows for quick identification of peaks 
with heteroatomic species of interest, such as S-containing compounds. Plotting the masses of interest (in the 
green box) onto the contour plot allowed for identification of C0-C5 series of dibenzothiophenes.
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Figure 6:  Total Ion Chromatograms of environmental mixture 
shows the power of the complementary modes of ionization, 
especially with the high selectivity of ECNI for the low-level 
halogenated species that could be missed by EI analysis alone. 

Environmental Analyses
Goals: Leverage ECNI to identify and created targeted methods for organic pollutants of interest.

Figure 7:  Confirming identity of trans-nonachlor using combination of EI 
fragmentation and ECNI molecular ion with high isotopic fidelity; where EI 
match to library did not provide either molecular ion or high enough 
confidence in spectral similarity score, the corresponding ECNI peak shows 
a clear molecular ion with excellent isotopic fidelity for the putative formula. 
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Conclusion
Many pieces of the identification puzzle were provided by the combination of GCxGC with multiple modes of HRTOFMS ionization—
GCxGC offered not only enhanced chromatographic resolution and cleaner mass spectra for more accurate deconvolution, but 
also structural information based on regions of elution, while the HRTOFMS supplied full-mass range spectra and confident 
calculation of chemical formulae in addition to the ability to leverage scaled mass defect plots for heteroatom determination. This 
poster highlights the power of combining all these contributions into one workflow with streamlined tools within one software 
package that allows for more confident identification of both targeted and nontarget species of interest.
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