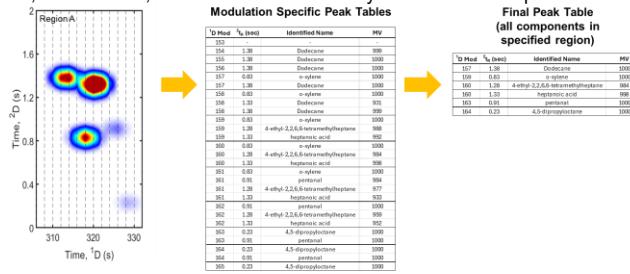


Developing 2D mzCompare for single GC×GC-TOFMS chromatograms: Substantial resolution enhancement in the context of statistical overlap theory



Wenjing Ma, Caitlin N. Cain, Robert E. Synovec

Department of Chemistry, University of Washington, Seattle, WA

Overview

Accurate identification of all detectable analyte components in a single comprehensive two-dimensional (2D) gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS) chromatogram is a fundamental interest in the field. Herein, we developed a new algorithmic software approach called 2D mzCompare to generate accurate peak tables for GC×GC-TOFMS. Extending from our original method for one-dimensional GC-MS data, the 2D mzCompare algorithm discovers selective mass channels (m/z) for each analyte to resolve overlapping peaks and improve analyte identification, leveraging the similarity in retention time and peak shape across m/z of the same analyte. The 2D mzCompare algorithm calculates the peak shape similarity between m/z at every modulation via lack-of-fit (LOF), followed by clustering and focusing steps, to generate a final peak table. To evaluate this software, we simulated realistic GC×GC-TOFMS data in the context of the statistical overlap theory (SOT), so the exact number and identities of analytes are known *a priori*. Utilizing an in-house mass spectrum library of similar compounds, GC×GC-TOFMS chromatograms were simulated with varying degrees of chromatographic saturation (α_{2D}). First, we provide a new algorithmic approach, 2D mzCompare, to resolve overlapped analytes in GC×GC-TOFMS data, and second, we validate the accuracy of the software performance using SOT.

