thermoscientific

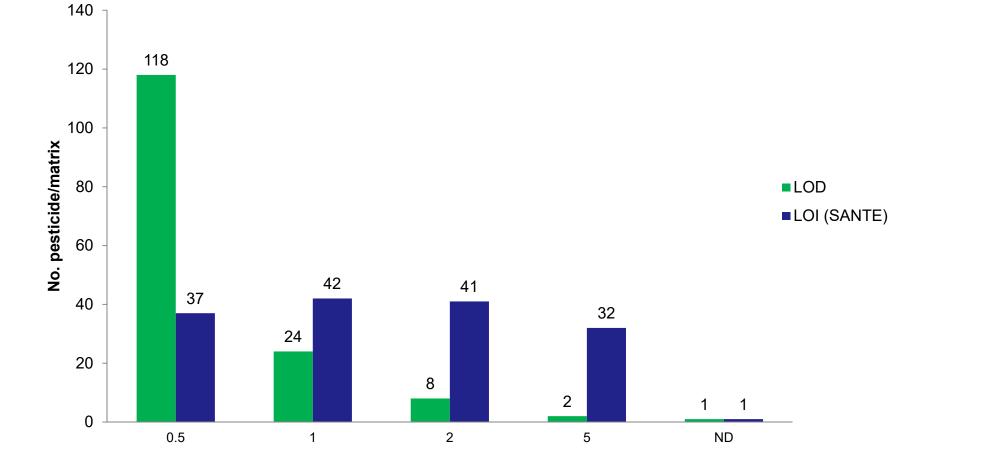
An Assessment of GC Orbitrap MS Technology for the Routine Screening and Quantification of Pesticide **Residues in Food**

Paul Silcock, Dominic Roberts, and Cristian Cojocariu; Thermo Fisher Scientific, Tudor Road, Runcorn, Cheshire, UK, WA7 1TA

ABSTRACT

The results of this study show that the Thermo Scientific[™] Exactive[™] GC Orbitrap[™] GC-MS system is a robust analytical tool for the analysis of pesticide residues in complex matrices to regulatory requirements. The scope of the analysis is increased by offering high performance full-scan analysis. Routine mass resolution of 60,000 FWHM and consistent sub-ppm mass accuracy ensures selective and confident compound detection and identification. Repeated injections demonstrate that the system is suitable for routine analysis.

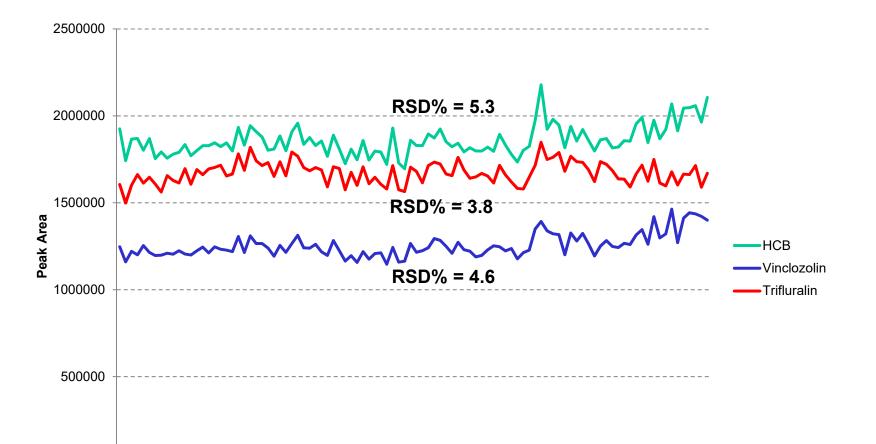
INTRODUCTION


Pesticides are measured by liquid chromatography (LC) and gas chromatography (GC) analytical methodologies. GC offers good separation efficiency and a choice of MS detectors such as single or triple quadrupoles. However, targeting specific compounds during acquisition limits the scope of analysis. This limitation has led to increased interest in the development of methods using MS analyzers that can operate in full-scan with a high-mass resolving power, but provide similar levels of selectivity and quantitative performance. In this work, we demonstrate the use of GC Orbitrap technology in the context of the SANTE guidelines1 for high throughput pesticide residues analysis in fruits and vegetable samples with an almost unlimited scope in the analysis through full-scan acquisition.

MATERIALS AND METHODS

Sensitivity

All pesticides were detected and confirmed following SANTE guidelines at $\leq 5 \mu g/Kg$ (Figure 3) with the exception of chlorothalonil in leek, which is known to degrade in this matrix.² The LOI required 2 ions to be detected with <5 ppm mass accuracy, retention times within 0.1 minute and ion ratios of <30%. LODs were much lower with 93% of pesticides detected at $\leq 1 \mu g/Kg$.


Figure 3. The limit of detection (LOD) and limit of identification (LOI) to SANTE guidelines for pesticide matrix combinations.

Repeatability

To evaluate the repeatability of the Exactive GC system over a longer period, a tomato extract at 10 µg/Kg was repeatedly injected 100 times from a single vial. Prior to commencing analysis, a new liner was installed, the source tuned and the MS calibrated. No further interventions were made during the 66 hours of continual analysis. Peak areas showed good RSD% and mass accuracy maintained at ≤ 1 ppm (Figures 8 and 9).

Figure 8. Repeat injections (n=100) of a tomato extract spiked at 10 µg/Kg showing that the sensitivity is maintained over the 66 hours of continual operation.

Sample Preparation

Tomato, leek and orange samples were extracted using the acetate buffered QuEChERS protocol. A mixture of salts was added and the centrifuge tube shaken for 4 minutes and centrifuged for 5 minutes at 3700 rpm. 5 mL was transferred to a 15 mL PTFE centrifuge tube containing magnesium sulphate and 125 mg of PSA. The extract was shaken in a vortex mixer and centrifuged as above. The final acetonitrile extracts (1g/mL) were used as blank matrix. The calibration series was prepared by taking 100 µl of acetonitrile blank matrix and drying under a stream of nitrogen. The sample was reconstituted in 100 µl ethyl acetate containing the appropriate concentration of 51 pesticides. See GC and MS details in Tables 1 and 2.

Table 1. GC and MS Parameters

TRACE 1310 GC Para	meters					
Injection Volume (mL):	1					
Liner:	LinerGOLD™ single taper					
Inlet (°C):	280					
Carrier Gas, (mL/min):	He, 1.2					
Oven Temperature Program:						
Temperature 1 (° C):	40					
Hold Time (min):	1.5					
Temperature 2 (° C):	90					
Rate (°C/min):	25					
Hold Time (min):	1.5					
Temperature 3 (° C):	280					
Rate (°C/min):	5					
Hold Time (min):	0					
Temperature 4 (° C):	300					
Rate (° C/min):	10					
Hold Time (min):	5					

Exactive GC Mass Sp Parameters	ectrometer				
Transfer line (° C):	280				
Ionization type:	EI				
lon source (° C):	250				
Electron energy (eV):	70				
Acquisition Mode:	full scan				
Mass range (Da):	50-550				
Resolving power (FWHM at <i>m/z</i> 200):	60,000				
Lockmass, column bleed (<i>m/z</i>):	207.03235				

Data Acquisition and Analysis

A ten point matrix matched calibration series was run from 0.5 – 500 µg/Kg. In addition, 10 replicates were analyzed of each sample at 10 µg/Kg. A final repeatability test involved 100 repeat injections of tomato at 10 µg/Kg.

LOD/LOI (µg/Kg)

For HR-MS to be used in routine it is essential that the processing software is fast and accurate. TraceFinder software is used to process the data and present the results to the analyst. Flags are used to indicate when criteria are met or fail (Figure 4). All detected pesticides were linear $R^2 > 0.99$ and an example is shown below.

Figure 4. TraceFinder browser showing positively identified pesticides, extracted ion chromatogram and calibration graph (propazine as an example).

Compounds		•	μ ×	Sampl	e Result	s											
f Cor	npound	RT	•	F.	€ S	atu: 👳	Confirm +=	Sample ID	🖻 Area 👍	Actual RT	+ m/z (Expected)	⊣= m/z (Delta) ⊣=	IR	👳 Isotopic Pat	tern Score (%) 👍	R	л
Aa	•	<u>A</u> a ·			A	-	= -	<u>A</u> a •	<u>A</u> a 👻	<u>A</u> a 👻	<u>A</u> a •	<u>A</u> a 🗸	= -	=	•	Aa	•
33 Fipronil		16.11	т	÷ 2	2	•		Leek 0.5 ug/Kg	49801	12.31	214.0854	4828 (ppm)			0	12.31	1
34 Hexachlorol	oenzene	12.00	т	• 3	3	•	A	Leek 1 ug/Kg	212898	12.31	214.0854	5541 (ppm)			58	12.31	1
35 Iprodione		21.97	т	+ 4	1	•	A	Leek 2 ug/Kg	324095	12.31	214.0854	6254 (ppm)	•		66	12.31	1
36 Kresoxim-m	ethyl	18.30	т	• 5	5	•	•	Leek 5 ug/Kg	991200	12.30	214.0854	.0161 (ppm)	•		100	12.31	1
37 Metalaxyl		14.19	т	± 6	5	•	•	Leek 10 ug/Kg	2172675	12.31	214.0854	4828 (ppm)	•		100	12.31	1
38 Myclobutan	il	18.15	т	÷ 7	7	•	•	Leek 20 ug/Kg	3891693	12.31	214.0854	.2299 (ppm)	•		100	12.31	1
39 Oxadixyl		19.30	т	÷ 8	3	•	•	Leek 50 ug/Kg	11433890	12.31	214.0854	0552 (ppm)	•		100	12.31	1
40 Parathion-n	ethyl	13.98	т	÷ 9)	•	•	Leek 100 ug/Kg	21568976	12.31	214.0854	6254 (ppm)	•		100	12.31	1
41 Pendimetha	lin	16.01	т	± 1	0	•	•	Leek 200 ug/Kg	47069995	12.31	214.0854	2690 (ppm)	•		100	12.31	1
42 Pirimicarb		13.24	т	± 1	1	•	•	Leek 500 ug/Kg	112381602	12.31	214.0854	.5863 (ppm)	•		100	12.31	1
43 Procymidor	e	16.59	т	± 1	2	•		Leek 0 ug/Kg	N/F	N/F	214.0854	N/F			N/A	12.31	1
44 Propazine		12.31	т	± 1	3	0	•	Leek 10 ug/Kg	2297718	12.31	214.0854	6254 (ppm)	•		100	12.31	1
45 Pyrimethani	I	12.93	т	⊡ 1	4	•	•	Leek 10 ug/Kg	2229421	12.31	214.0854	4116 (ppm)	•		100	12.31	1
46 Terbuthylaz	ne	12.55	т	± 1	5	0	•	Leek 10 ug/Kg	2345810	12.31	214.0854	3403 (ppm)	•		100	12.31	1
47 Tetramethri		22.38	ΤΞ	⊕ 1	6	õ	•	Leek 10 ug/Kg	2275906	12.31	214.0854	2690 (ppm)	•		100	12.31	1
48 Tolclofos-m		14.02	т	± 1	7	õ	•	Leek 10 ug/Kg	2274406	12.31	214.0854	.2299 (ppm)	•		100	12.31	1
49 Trifluralin	2	11.33	т	± 1	8	0	•	Leek 10 ug/Kg	2266493	12.31	214.0854	.4437 (ppm)	•		100	12.31	1
50 Triphenylph	osphate (TPP)	21.21	т	± 1		õ	•	Leek 10 ug/Kg	2195922	12.31	214.0854	1977 (ppm)	•			12.31	
51 Vinclozolin	•	13.92	Т	± 2	0	õ	•	Leek 10 ug/Kg	2429947	12.31	214.0854	1977 (ppm)	•			12.31	
Compound Deta Quan Peak Leek_11May_N	• -		ibratior	Curve	•				Y = 2.26e5X		pazine 9988; Origin: Ignore; W: 1/X	<; Area				-	-
160	7		110													/	
140 120	RT: 12.30 AA: 991200 AH: 613737		90 80 70 60 50 40														
m/z: 214.0854	12.4 RT(min)	*		- 	_{₽₽} ₽ ⁻ ₽	_	■ 	••••••••••••••••••••••••••••••••••••••	20(· · · · · · · · · · · ·	250 300	350		450	500		.1.

Mass Accuracy

When the mass resolution is inadequate, the mass profile of two ions overlap, which results in the incorrect assignment of the mass of the target compound. This is demonstrated in Figure 5 where the leek 10 µg/Kg matrix standard was analyzed at resolving powers of 15K, 30K and 60K. An interference is observed that adversely impacts on the mass accuracy at 15K and 30K. Obtaining accurate mass information in a consistent manner is critical for determining the identity of a pesticide. The mass accuracy for all 51 pesticides was assessed at the pesticides LOI level and is summarized in Figure 6.

11 21 31 41 51 61 71 81 **Replicate No.**

Figure 9. Mass accuracy (ppm) over 100 injections for hexachlorobenzene, vinclozolin and trifluralin in tomato extract at $10 \mu g/Kg$.

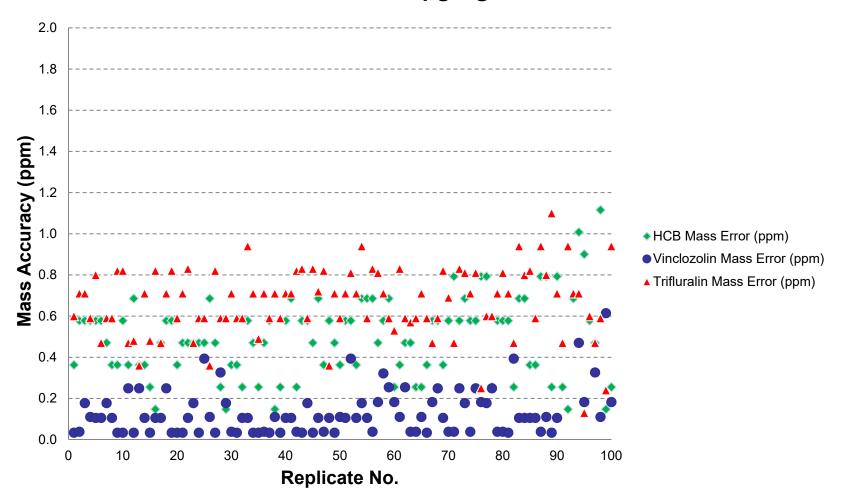
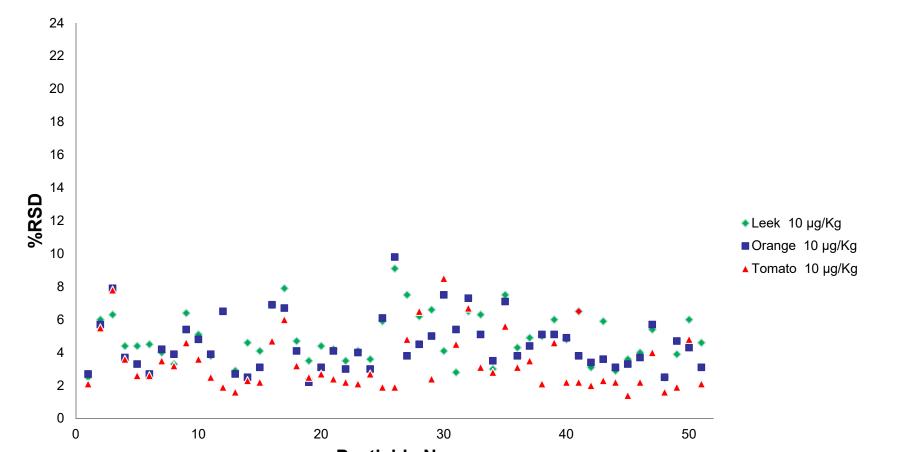
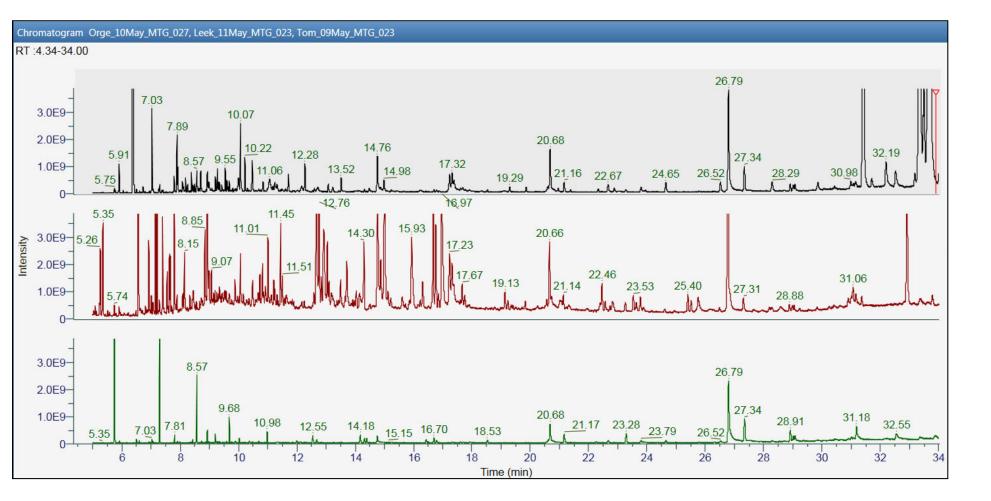



Figure 10. Repeatability (%RSD) for 10 µg/Kg (n=10) for each pesticide in the three matrices studied. SANTE guideline of 20% threshold shown in green.


Data was acquired and processed using the Thermo Scientific[™] TraceFinder[™] software. TraceFinder allows easy data acquisition, reviewing and data reporting.

RESULTS

Chromatography

Good chromatographic separation was obtained using the GC conditions (Figure 1) and sample complexity is demonstrated by the varying TIC profiles for the three sample types.

Figure 1. Full scan TIC for orange, leek and tomato.

MS Acquisition Speed

Using GC run times requires fast MS acquisition rates in order to obtain sufficient scans/peak. An example of typical number of scans acquired using the Exactive GC system operated at 60,000 resolution is shown below (Figure 2). Noticeably, beside the adequate number of scans/peak, excellent mass accuracy for every single scan across the peak was obtained (<0.6 ppm RMS).

Figure 2. XIC of chlorobenzilate (*m/z* 251.0025) showing 38 scans/peak. Data acquired in full-scan at 60,000 FWHM resolution Mass accuracy/scan shown as ppm.

T: 19.01 - 19.13	
100-	

Figure 5. Effect of resolving power on mass accuracy of the diagnostic ion of pyrimethanil at 10 µg/Kg in leek acquired at different resolutions of 15K, 30K and 60K.

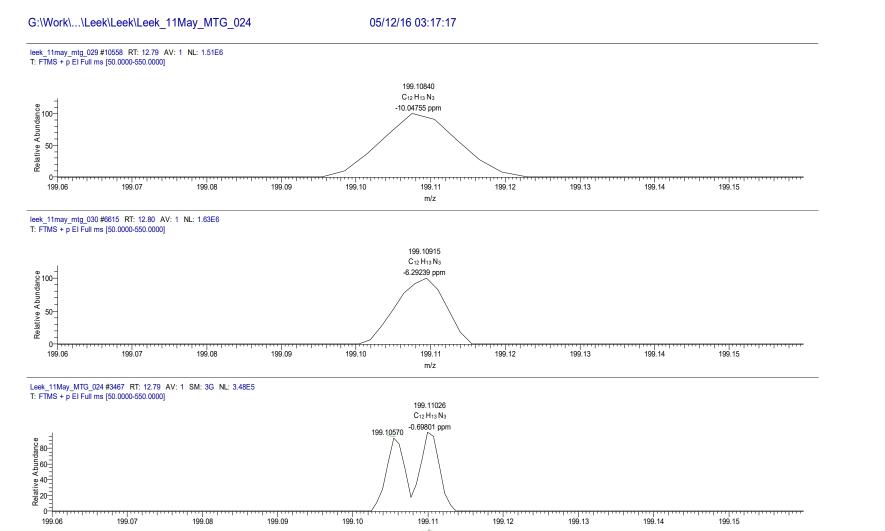
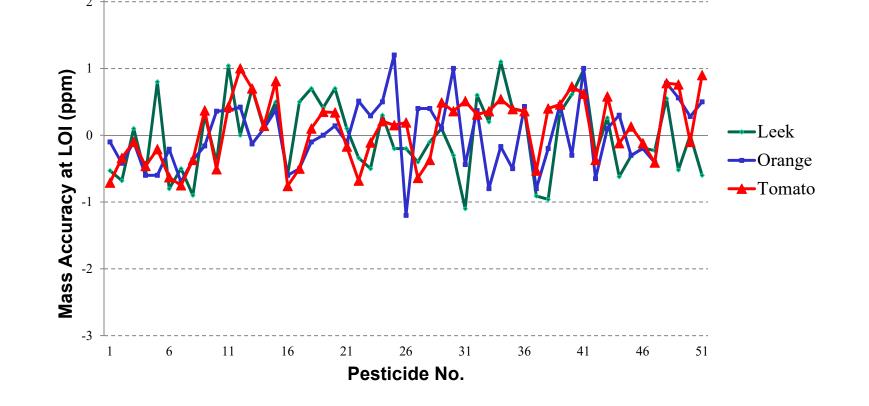



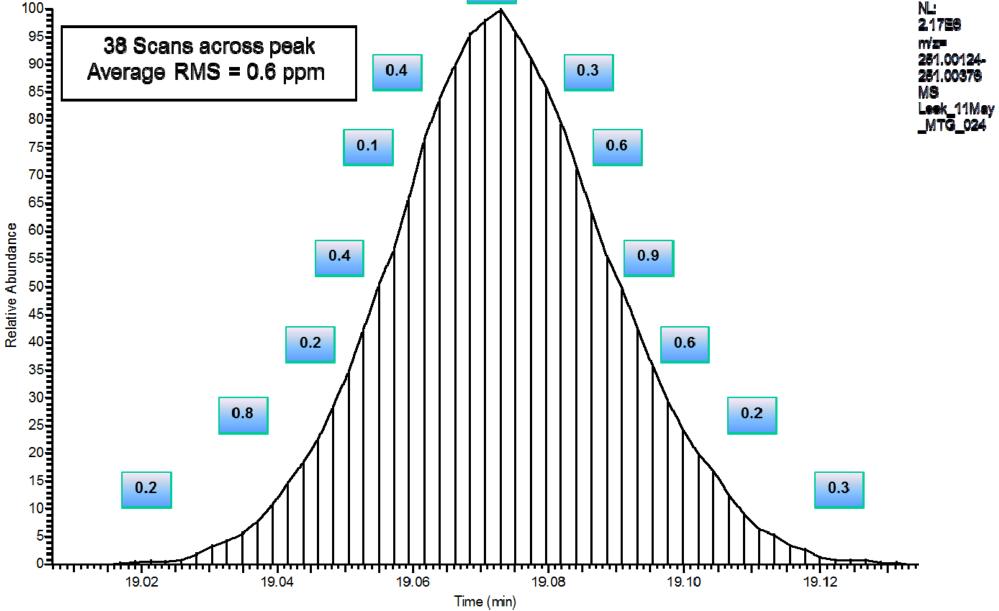
Figure 6. Mass difference measurements at the LOI level for each pesticide across the three matrices.

Pesticide No.

The results of the 10 replicate injections at 10 µg/Kg in all three matrices are presented in Figure 10. All of the detectable pesticides had RSD% less than 10%, well below the 20% threshold requirement in the SANTE guidance document. This shows that the system has the selectivity and sensitivity required to analyse pesticides in a robust manner at the MRL

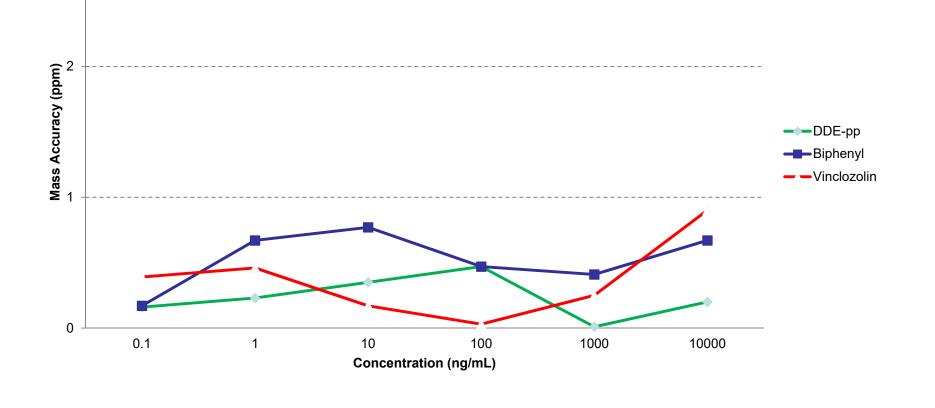
CONCLUSION

- The results of this study demonstrate that the Thermo Scientific Exactive GC Orbitrap Mass Spectrometer, in combination with TraceFinder software, is a robust and sensitive instrument for routine pesticide analysis in fruits and vegetables following the SANTE guidance document.
- 99.3% of the pesticide/matrix combinations were detected below the MRL with excellent linearity and meeting the required performance criteria.
- Mass accuracy was sub 1 ppm increasing confidence in identifications.
- Repeated injections of a tomato matrix at 10 µg/Kg showed that the system is able to maintain a consistent level of performance over an extended period of time as is demanded by a routine testing laboratory.


REFERENCES

- SANTE/11945/2015. Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed. Supersedes SANCO/12571/2013. Implemented by 01/01/2016.
- 2. Belmonte Valles N., Retamal M., Martinez-Uroz M.A., Mezcua, M., Fernandez-Alba AR, de Kok, A. (2012) Determination of chlorothalonil in difficult-to-analyse vegetable matrices using various multiresidue methods. Analyst, 137, 10, p 2513–2520.

ACKNOWLEDGEMENTS


The authors would like to thank Professor Amadeo Fernández-Alba and Samanta Uclés Duque at the European Reference Laboratory for Fruits and Vegetables, Almeria, Spain for providing samples, standards and discussion.

TRADEMARKS/LICENSING

In pesticide analysis it is also essential that the instrument is able to maintain mass accuracy across the complete range of possible analyte concentrations encountered. It would not be acceptable if a high concentration pesticide violation was missed due to detector saturation. On the Exactive GC system, the Orbitrap is protected from saturation by the C-Trap which regulates the ions being injected. This ensures that no matter what concentration is encountered the mass accuracy performance is preserved. This is demonstrated in Figure 7 which shows the mass accuracy for three pesticides at concentrations from 0.1 to 10,000 ng/mL (six orders of magnitude) is always <1 ppm.

Figure 7. Mass accuracy measurements across 6 orders of concentration (0.1–10,000 ng/mL) for DDE-p,p, biphenyl and vinclozolin in ethyl acetate.

© 2017 Thermo Fisher Scientific Inc. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. This information is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others.

ThermoFisher SCIENTIFIC