Application Note

Instrument: Pegasus® BT GC-TOFMS

Raw Material Screening with GC-MS: Flavor Analysis of Malted Grain from Hot Steeped Malt

LECO Corporation; Saint Joseph, Michigan USA

Key Words:GC-MS, GC-TOFMS, Pegasus BT, HS-SPME, Raw Materials, Malted Barley

Introduction

The ability to screen raw ingredients early in the production process for a food or beverage is useful for quality control, and also for identifying process modifications or optimizations to achieve the desired characteristics of the product. For beer, malted barley is one of the primary ingredients and it is added early in the brewing process. It provides complex carbohydrates and sugars that are crucial for fermentation and it also imparts flavor, body, and color to the final product. The flavor contribution depends largely on the style of malt used. Base, caramel, and dark roasted malts are all common and each lends unique flavor notes and characteristics. Traditionally, a chew test of whole kernels has been used as a check for flavor and freshness. While this test provides insight and has the benefit of being very fast, it does not fully reflect the flavors that are extracted during the brewing process that would be anticipated in the final product. The American Society of Brewing Chemists has a published Method of Analysis, the "Hot Steep Malt Sensory Evaluation Method",^[1] to prepare malt extracts for sensory analysis that are more representative of the malt in the beer. Chemical analyses are good complements to traditional sensory analysis and here we aim to further investigate these types of samples with a non-targeted chemical analysis. Head space solid phase micro-extraction (HS-SPME) was used to collect the volatile and semi-volatile flavor analytes, and gas chromatography coupled to mass spectrometry (GC-MS) was used for subsequent analysis. A variety of malt extracts were prepared and analyzed yielding data that provided information on individual analytes differentiating these malt styles. Many of the observed analytes have known flavor and odor properties which can be connected with the sensory attributes of the malts.

Figure 1. Six malt extracts were compared. Representative Total Ion chromatograms (TIC) and pictures are shown for each and PCA of the TIC traces was performed.

Experimental

Six varieties of malted barley, listed in Table 1, were prepared for analysis based on the ASBC's "Hot Steep Malt Sensory Evaluation Method.⁽¹¹⁾ For this work, the method was scaled to 20% due to the reduced volume required for analytical analysis compared to sensory analysis. For each malt variety, 10 g of ground malt were added to 80 mL of 65 °C water in an insulated thermos and mixed with shaking. After 15 minutes of extraction, the contents were swirled and filtered, resulting in the malt extract/wort samples. As advised in the protocol, base malts were analyzed at 100%, specialty malts were mixed with base malt at 50%, and dark roasted specialty malts were mixed with base malt at 15%. For each sample, 5 mL of wort were pipet into a 20 mL glass vial with septum cap. The samples were incubated for 5 min at 35 °C and then extracted with a DVB/CAR/PDMS fiber (Supelco) for 10 min at the same temperature. Each sample was then analyzed by GC-MS with the Pegasus BT (LECO). All analytical data for a given sample was acquired within 4 h of filtration. Instrument conditions are listed in Table 2.

Table 1. Malted Barley Varieties

Sample	Name	Malt Type	Inclusion Level	Lovibond
А	2-Row	Base	100 %	1.8
В	Aromatic	Specialty	50 %	20
С	Caramel 20L	Specialty	50 %	20
D	Caramel 120L	Specialty	50 %	120
E	Chocolate	Dark Roast Specialty	15 %	350
F	Black	Dark Roast Specialty	15 %	500

Table 2. GC-TOFMS (Pegasus BT) Conditions

Gas Chromatograph	Agilent 7890 with LECO L-PAL 3 Autosampler
Injection	SPME, 3 min desorption in 250 °C inlet
Carrier Gas	He @ 1.4 mL/min, Constant Flow
Column One	Stabilwax, 30 m x 0.25 mm i.d. x 0.25 μ m coating (Restek)
Temperature Program	3 min at 40 °C, ramped 10 °C/min to 250 °C, hold 1 min
Transfer Line	250 °C with uncoated guard column
Mass Spectrometer	LECO Pegasus BT
Ion Source Temperature	250 °C
Mass Range	33-500 m/z
Acquisition Rate	10 spectra/s

Results and Discussion

Different malt styles are produced by altering the temperature and duration of kiln heating and/or roasting of the barley. These conditions drive various reactions, and alterations will yield a range of malt styles and impact the types and amounts of the reaction by-products produced. Both caramelization, the breakdown of sugars, and the Maillard reaction, the reaction of a reducing sugar with an amino acid, are anticipated and have by-products with important odor and flavor characteristics. The malt styles are categorized as base, specialty, or dark roast specialty with the darker roasted malts generally heated to higher temperatures for greater lengths of time. Extracts from six varieties of malted barley, shown in Figure 1 and described in Table 1, were analyzed and compared. These included a base malt, three specialty malts, and two dark roast specialty malts. Chromatograms for each of the extracts, shown in Figure 1, represent the aroma profiles of each sample. Some similarities and many differences are apparent between the samples and preliminary general characterization was done with Principle Component Analysis (PCA) of the TIC traces. The scores plot, where each sample is represented as a data point, is shown in Figure 1. The extracts from each malted barley variety distinctly cluster and the dark specialty roast samples have lower PC1 scores while the caramel malts have higher PC1 scores.

The general distinction of these samples can be further explored by looking at trends of individual analytes across the malt varieties. With this analytical technique, individual analytes are separated from each other both chromatographically and mathematically. Chromatographic coelution still frequently occurs with complex samples and many of these cases can be distinguished with mathematical deconvolution of the full mass range TOFMS data, as demonstrated in Figure 2. There are two apparent peaks in the TIC, but spectral patterns indicate the coelution of four analytes. By plotting masses unique to each, the peak shapes can be observed and integrated to provide peak areas and information on the relative trend across the samples. Pure spectral information for each analyte is also generated and when matched with commercially available libraries, provides tentative identification information from which odor characteristics can be determined. These four analytes, that were confounded in the TIC, have interesting odor characteristics and distinctly different trends that were observed because of deconvolution capabilities. 2(3H)-furanone, dihydro-5-pentyl is observed in all of the samples with only subtle differences between the malt styles. This analyte has sweet, buttery, coconut, creamy, waxy, and oily odor descriptors. Furaneol has caramel, cotton candy, sweet, strawberry, and sugar odor descriptors and is observed at highest levels in the 120L caramel malt with varying levels in the other styles. 1H-pyrrole-2-carboxaldehyde and 4-ethyl-2-methoxy phenol were both observed at highest levels in the chocolate malt. The pyrrole has coffee and musty odor descriptors while the phenol has odor descriptors of

smoky, spicy, bacon, phenolic, and clove. The decrease in the levels in the black malt is potentially attributed to thermal breakdown as black malt is often heated to higher temperatures (above 260 °C), driving further reactions and also surpassing the boiling point of some of these compounds (217-219 °C and 234-236 °C for the pyrrole and phenol compounds, respectively).

Figure 2. Deconvolution separates four individual analytes that appear as two peaks in the TIC. These analytes are present at different levels in each sample, likely contributing to some of the flavor differences related to malt variety used.

Many other individual analytes were observed and information for nearly 200 compounds was compiled in Figure 3 and Appendix A. These specific analytes were identified based on mass spectral similarity (>800) compared to the NIST 2017 database and retention index matching (library vs observed < 40 Rl units). A wide range of analyte types were observed, including: alcohols, aldehydes, ketones, hydrocarbons, aromatics, esters, furans, pyranones, pyrazines, pyridines, pyrroles, sulfides, thiophenes, etc. Information on these tentative analyte identifications is compiled in Appendix A. Relative peak area trends were also determined across the malted barley varieties, demonstrated in the heat map, with several distinct trends observed.

A collection of specific analytes are highlighted in Figure 4 with additional details compiled. These analytes may be of particular interest because of their known relationships to malting and/or brewing. Dimethyl sulfide (DMS) is produced during germination and the early stages of kilning, and is an important odor compound with sulfury or corn descriptors. As a volatile compound, it can be driven off during the higher temperature kilning or roasting of specialty and dark specialty roasted malts. As expected, DMS was observed at highest levels in the base malt and at lower levels in the specialty and dark roast specialty malts. Methional is also an important odor compound related to beer and has potato odor characteristics. This is a breakdown product of the amino acid, methionine, and is often a target of routine screening. We observe methional at highest levels in the Aromatic and Caramel 120L malts. By-products of carmelization and the Maillard reaction are also anticipated and nitrogencontaining rings, like 2-6-dimethyl pyrazine, are potential Maillard reaction products while maltol is likely a caramelization product. The trends of these specific analytes and other similar analytes across the 120L, Chocolate, and Black malts may shed light on the types of reactions occurring for each type of malt.

Figure 3. Peak area trends by malt variety.

Figure 4. Representative analytes with distinct trends related to the malt varieties are shown.

Conclusion

In this work, we demonstrate an analytical method for analyzing malt extracts, prepared by the ASBC's "Hot Steep Malt Sensory Evaluation Method" intended for sensory analysis. The malt extracts were sampled with HS-SPME and analyzed with GC-MS. This analytical approach can provide good complementary data on individual analytes and help uncover more about your sample. Hundreds of analytes were identified and compared, with many malt specific trends observed. Many caramelization and Maillard reaction products were observed at elevated levels in the samples roasted at higher temperatures.

References

⁽¹⁾"Hot Steep Malt Sensory Evaluation Method," Sensory Analysis – 14, ASBC Methods of Analysis.

LECO, Pegasus, ChromaTOF, and StayClean are trademarks of LECO Corporation.

LECO Corporation | 3000 Lakeview Avenue | St. Joseph, MI 49085 | Phone: 800-292-6141 | 269-985-5496 info@leco.com • www.leco.com | ISO-9001:2015 Q-994 | *LECO* is a registered trademark of *LECO* Corporation.

Appendix Tentative identifications of analytes shown in Figure 3.

#	Name	CAS	Similarity	R.T. (s)	RI	Lib RI	Formula
1	pentane, 1-chloro-	543-59-9	872	125.2	939.9	945	C₅H ₁₁ Cl
2	methylene chloride	75-09-2	939	121.4	933.6	933	CH_2CI_2
3	trichloromethane	67-66-3	913	188.7	1025.3	1022	CHCl₃
4	ethyl acetate	141-78-6	948	101.2	900.2	888	$C_4H_8O_2$
5	propanoic acid, 2-methyl-, ethyl ester	97-62-1	873	141.4	966.7	961	$C_6H_{12}O_2$
6	acetoin	513-86-0	874	458.4	1285	1284	C ₄ H ₈ O ₂
/	m-cymene	535-//-3	81/	436.6	1262.5	1269	$C_{10}H_{14}$
8	butanoic acid, 3-methyl-, ethyl ester	108-64-5	8/5	235.0	1068.4	1008	$C_7H_{14}O_2$
9	propagoic acid, 2 bydroxy, othyl ostor	07 64 3	909	405.0	1229.9	1233	
11	propunoic uciu, z-nyuroxy- ennyi esier	95-63-6	804	444 5	1270 7	1283	CoH1003
12	ethanol	64-17-5	931	121.9	934.5	932	C ₂ H ₄ O
13	decanoic acid, ethyl ester	110-38-3	877	739.8	1634.4	1638	C12H24O2
14	methane, tribromo-	75-25-2	810	592.0	1439.4	1430	CHBr ₃
15	butanoic acid, 2-methyl-, ethyl ester	7452-79-1	890	218.4	1052.9	1051	$C_7H_{14}O_2$
16	3-hexen-1-ol	544-12-7	850	544.8	1382.2	1391	C ₆ H ₁₂ O
17	1-penten-3-one	1629-58-9	906	187.0	1023.7	1019	C₅H ₈ O
18	acetic acid, hexyl ester	142-92-7	918	443.1	1269.2	1272	$C_8H_{16}O_2$
19	1-hexanol	111-27-3	951	517.9	1351.4	1355	C ₆ H ₁₄ O
20	pyrazine, 2-methoxy-3-(1-methylpropyl)-	24168-70-5	813	637.2	1495.6	1500	C ₉ H ₁₄ N ₂ O
21	dodecanoic acid, ethyl ester	106-33-2	837	876.8	1837.4	1841	$C_{14}H_{28}O_2$
22	acetic acid, 2-phenylethyl ester	103-45-7	922	860.2	1811.3	1813	$C_{10}H_{12}O_2$
23	2-nonanone	021-33-0 505 57 7	024	240.0	1383	1390	
24	2-nexendi	60 12 8	930	021.6	1214.4	1213	
25	toluene	108-88-3	943	203.5	1039 1	1042	C-H-
27	2.4-di-tert-butylphenol	96-76-4	903	1150.1	2308.8	2318	CuH ₂₀ O
28	dimethyl sulfide	75-18-3	979	70.5	794	754	C ₂ H ₄ S
29	1-penten-3-ol	616-25-1	876	339.6	1166	1159	C ₅ H ₁₀ O
30	n-decanoic acid	334-48-5	902	1137.1	2284.2	2276	$C_{10}H_{20}O_2$
31	decane	124-18-5	839	164.1	1002.4	1000	C ₁₀ H ₂₂
32	5,9-undecadien-2-one, 6,10-dimethyl-(E)-	3796-70-1	847	884.4	1849.2	1859	$C_{13}H_{22}O$
33	1-heptanol	111-70-6	906	602.4	1452.3	1453	C ₇ H ₁₆ O
34	2-octanone	111-13-7	941	453.1	1279.5	1287	C ₈ H ₁₆ O
35	benzeneacetic acid, ethyl ester	101-97-3	892	841.2	1782.3	1783	$C_{10}H_{12}O_2$
30	naphthalene	91-20-3	838	809.5	1/34.9	1/45	
3/	octanois asid athyl astor	30431-00-4	849	207.8 594.0	1409.3	1410	
30	5-henten-2-one 6-methyl-	110-93-0	904	502.8	133/ 2	1338	$C_{10}\Pi_{20}O_{2}$
40	butanenitrile 3-methyl-	625-28-5	942	296.5	1125 7	1125	C ₈ H ₁₄ O
41	octanoic acid	124-07-2	884	1020.1	2072.9	2060	C ₀ H ₁₄ O ₂
42	limonene	138-86-3	834	360.4	1185.4	1200	C ₁₀ H ₁₆
43	1-propanol, 2-methyl-	78-83-1	933	271.0	1102	1092	C₄H ₁₀ O
44	linalool	78-70-6	848	673.9	1544.3	1547	C ₁₀ H ₁₈ O
45	3,5-octadien-2-one	38284-27-4	864	652.9	1516.3	1522	$C_8H_{12}O$
46	2,6-nonadienal, (E,Z)-	557-48-2	933	701.7	1581.5	1584	C ₉ H ₁₄ O
47	nonanal	124-19-6	931	550.5	1388.7	1391	C ₉ H ₁₈ O
48	I-hexanol, 2-ethyl-	104-76-7	957	630.4	1487.1	1491	C ₈ H ₁₈ O
49	2(3H)-furanone, 5-ethylainyaro-	095-06-7	924	/85.0	1098.2	1694	$C_6H_{10}O_2$
51		111 97 5	937	424.0	1250.1	1250	
52	furan 2-pentul-	3777-69-3	952	400.7	1225 4	1231	
53	2-pentenal. (E)-	1576-87-0	819	299.8	1128.9	1127	C _c H _e O
54	2(3H)-furgnone, dihydro-5-pentyl-	104-61-0	877	992.1	2024.8	2024	C ₀ H ₁₄ O ₂
55	3-pentanone, 2-methyl-	565-69-5	888	163.0	1001.3	1003	C ₆ H ₁₂ O
56	acetic acid	64-19-7	936	620.2	1474.4	1449	$C_2H_4O_2$
57	2-octen-1-ol, (E)-	18409-17-1	901	724.0	1612.1	1614	C ₈ H ₁₆ O
58	isobutyl acetate	110-19-0	839	179.6	1016.8	1012	$C_6H_{12}O_2$
59	benzophenone	119-61-9	922	1234.0	2473.7	2450	$C_{13}H_{10}O$
60	3,5-octadien-2-one, (E,E)-	30086-02-3	905	690.6	1566.7	1570	C ₈ H ₁₂ O
61	2,4-heptadienal, (E,E)-	4313-03-5	821	632.3	1489.5	1495	C ₇ H ₁₀ O
62	o-xylene	95-47-6	832	350.0	11/5./	1186	C ₈ H ₁₀
63	I-butanol, 3-methyl-, acetate	123-92-2	897	288.9	1118./	1122	$C_7H_{14}O_2$
65	1-butanal 3-methyl	172 51 2	014	394.2	1209.5	1200	
66	2-butenal	4170-30-3	839	207 1	1042 4	1047	
67	2.4-decadienal (F.7)-	25152-83-4	883	827.1	1761 1	1754	
68	2-heptenal, (E)-	18829-55-5	904	489.7	1319.2	1323	C7H12O
69	p-xylene	106-42-3	888	302.7	1131.6	1138	C ₈ H ₁₀
70	2,3-butanedione (diacetyl)	431-03-8	870	152.0	984.2	979	$C_4H_6O_2$
71	acetone	67-64-1	926	82.1	834.2	819	C₃H₀O
72	nonanoic acid	112-05-0	920	1079.6	2178.2	2171	C ₉ H ₁₈ O ₂
73	pentanal	110-62-3	930	150.4	981.6	979	C ₅ H ₁₀ O
74	2-nonenal, (E)-	18829-56-6	961	664.1	1531.2	1534	C ₉ H ₁₆ O
/5	Z-n-butyl turan	4466-24-4	834	297.6	1126.8	1123	$C_8H_{12}O$

#	Name	CAS	Similarity	R.T. (s)	RI	Lib RI	Formula
76	butanal, 3-methyl-	590-86-3	910	113.8	921	918	$C_5H_{10}O$
77	2-heptanone	110-43-0	934	353.8	1179.2	1182	C ₇ H ₁₄ O
78	hexanal	66-25-1	957	249.1	1081.6	1083	C ₆ H ₁₂ O
/9	butanoic acid, 3-methyl-	503-74-2	884	//4.9	1684	1666	$C_5H_{10}O_2$
81	acetic acid pentyl ester	628-63-7	040	346.0	1171 0	1411	
82	styrene	100-42-5	902	427.0	1252.6	1260	C ₀ H ₀
83	1-octen-3-ol	3391-86-4	914	599.0	1448.1	1450	
84	2,4-nonadienal, (E,E)-	5910-87-2	872	784.1	1697	1700	C ₉ H ₁₄ O
85	furan, 2-ethyl-	3208-16-0	897	133.3	953.3	950	C ₆ H ₈ O
86	hexanoic acid	142-62-1	942	891.5	1860.5	1846	$C_6H_{12}O_2$
87	2-octenal, (E)-	2548-87-0	947	580.3	1424.8	1429	$C_8H_{14}O$
88	benzyl alcohol	100-51-6	847	899.9	1873.6	1870	C ₇ H ₈ O
89	butyrolactone	96-48-0	941	/33.8	1625.9	1632	$C_4H_6O_2$
90	benzaldebyde	100-52-7	957	477.1 655.4	1519.6	1520	
92	benzaldehyde. 4-ethyl-	4748-78-1	837	788.5	1703.5	1721	
93	pyrrole	109-97-7	895	652.2	1515.3	1514	C₄H₅N
94	butanal, 2-methyl-	96-17-3	915	111.5	917.2	914	C₅H ₁₀ O
95	2-heptanone, 6-methyl-	928-68-7	900	409.7	1234.7	1237	$C_8H_{16}O$
96	octanal	124-13-0	864	458.3	1285	1289	C ₈ H ₁₆ O
97	4-heptenal, (Z)-	6728-31-0	903	413.9	1239.1	1240	C ₇ H ₁₂ O
98	2-methoxy-4-vinylphenol	//86-61-0	830	1088.1	2193.3	2188	$C_9H_{10}O_2$
100	acetic acid methyl ester	79_20_9	077	8/1	8/1 2	828	
101	indole	120-72-9	856	1218.3	2442.2	2445	C ₀ H ₇ N
102	thiophene, 3-phenyl-	2404-87-7	855	1052.3	2129.4	2116	
103	2-butanone	78-93-3	937	106.2	908.4	907	C₄H ₈ O
104	acetophenone	98-86-2	871	748.7	1646.9	1647	C ₈ H ₈ O
105	pyridine, 2-ethyl-	100-71-0	897	448.4	1274.7	1278	C7H9N
106	ethylbenzene	100-41-4	903	287.9	1117.7	1129	C ₈ H ₁₀
107	2(3H)-turanone, 5-methyl-	591-12-8	805	584.5	1430.1	1426	C ₅ H ₆ O ₂
108	2,5-turan dicarboxalaenyae	823-82-3	912	900.0	1980.2	1991	
110	2 4-decadienal (E E)-	25152-84-5	845	856.6	1805 5	1811	
111	5-hvdroxymethylfurfural	67-47-0	857	1246.7	2499.4	2496	
112	benzeneacetaldehyde, α-ethylidene-	4411-89-6	895	933.8	1928.1	1929	C ₁₀ H ₁₀ O
113	methional	3268-49-3	899	603.2	1453.2	1454	C₄H ₈ OS
114	maleic anhydride	108-31-6	803	563.9	1404.4	1420	$C_4H_2O_3$
115	2-propanone, 1-hydroxy-	116-09-6	919	471.0	1298.1	1303	C ₃ H ₆ O ₂
116	2-butenal, 2-methyl-	1115-11-3	824	260.5	1092.2	1095	C₅H ₈ O
110	2-pentenal, 2-methyl-	023-30-9	806	329.9	1157	010	
119	pyrazine trimethyl-	14667-55-1	874	555.8	1394.8	1402	
120	1H-pyrrole-2-carboxaldehyde, 1-ethyl-	2167-14-8	809	719.1	1605.1	1610	C ₇ H ₉ NO
121	4,5-dimethyl-2-isobutyloxazole	26131-91-9	836	505.6	1337.3	1330	C ₉ H ₁₅ NO
122	benzene, propyl-	103-65-1	892	375.5	1199.5	1212	C ₉ H ₁₂
123	5-methyl-2-phenyl-2-hexenal	21834-92-4	873	1018.9	2070.8	2056	C ₁₃ H ₁₆ O
124	ethanone, 1-(2-pyridinyl)-	1122-62-9	843	713.7	1597.6	1597	C ₇ H ₇ NO
125	pyrazine, 2,5-dimethyl-3-(3-methylbutyl)-	18433-98-2	8/3	/50.2	1649	2000	$C_{11}H_{18}N_2$
120	pyrazine 2 5-dimethyl-	123-32-0	902	485.2	1314 1	1320	
128	2.3-pentanedione	600-14-6	939	231.1	1064.8	1058	
129	benzeneacetaldehyde, α-(2-ethylpropylidene)-	26643-91-4	831	939.7	1937.8	1926	C ₁₂ H ₁₄ O
130	ethanone, 1-(1H-pyrrol-2-yl)-	1072-83-9	925	957.9	1967.7	1973	C ₆ H ₇ NO
131	ethanone, 1-(2-furanyl)-	1192-62-7	945	642.6	1502.5	1499	$C_6H_6O_2$
132	benzene, n-butyl-	104-51-8	931	476.7	1304.3	1312	C ₁₀ H ₁₄
133	pyrazine, 3-ethyl-2,5-dimethyl-	13360-65-1	914	589.9	1436./	1443	$C_8H_{12}N_2$
134	endnone, I-(I-meinyi-In-pyrroi-2-yi)-	932-10-1 122 78 1	035	701.0	1621.1	1640	
136	furan	110-00-9	923	77.6	818.8	798	CHO
137	3(2H)-furgnone, dihvdro-2-methyl-	3188-00-9	866	435.9	1261.8	1268	
138	pyrazine, 2,5-dimethyl-3-(2-methylpropyl)-	32736-94-0	803	653.6	1517.2	1520	C ₁₀ H ₁₆ N ₂
139	furfural	98-01-1	965	612.0	1464.2	1462	$C_5H_4O_2$
140	methyl isobutyl ketone	108-10-1	908	172.3	1010	1010	$C_6H_{12}O$
141	2-vinylfuran	1487-18-9	871	242.8	1075.7	1063	C ₆ H ₆ O
142	thiophene	110-02-1	940	187.6	1024.3	1025	C₄H₄S
143	m-cresol disulfide dimethyl	108-39-4	845 024	1029.6	2089.1	2091	
144	nyridine	110-86-1	924	∠30.8 351.2	1176.8	1185	
146	2-cyclonenten-1-one 2-methyl-	1120-73-6	861	527 4	1362.3	1367	C/H ₂ O
147	furaneol	3658-77-3	859	994.7	2029.3	2031	C ₄ H ₂ O ₂
148	2(5H)-furanone	497-23-4	928	821.5	1752.8	1742	$C_4H_4O_2$
149	2-furanmethanol, acetate	623-17-6	885	667.5	1535.7	1531	C ₇ H ₈ O ₃
150	furan, 3-phenyl-	13679-41-9	896	885.5	1851	1849	C ₁₀ H ₈ O
151	benzaldehyde, 2-methyl-	529-20-4	891	729.3	1619.5	1632	C ₈ H ₈ O
152	pyrazine, 2-ethyl-5-methyl-	13360-64-0	820	545.5	1383	1387	$C_7H_{10}N_2$

#	Name	CAS	Similarity	R.T. (s)	RI	Lib RI	Formula
153	oxazole, trimethyl-	20662-84-4	901	365.1	1189.8	1197	C₀H₀NO
154	2-furanmethanol, 5-methyl-	3857-25-8	859	799.3	1719.6	1714	C ₆ H ₈ O ₂
155	thiophene, 2-methyl-	554-14-3	864	255.0	1087.1	1097	C₅H ₆ S
156	2-propanone, 1-(acetyloxy)-	592-20-1	934	613.7	1466.3	1474	C₅H ₈ O ₃
157	1H-pyrrole-2-carboxaldehyde	1003-29-8	925	990.3	2021.8	2030	C₅H₅NO
158	p-cresol	106-44-5	901	1025.1	2081.4	2080	C ₇ H ₈ O
159	benzene, pentyl-	538-68-1	827	566.1	1407.2	1419	C ₁₁ H ₁₆
160	3-hexanone, 5-methyl-	623-56-3	864	241.5	1074.5	1082	$C_7H_{14}O$
161	pyrazine, 2,3-dimethyl-	5910-89-4	925	506.6	1338.6	1344	$C_6H_8N_2$
162	dimethyl trisulfide	3658-80-8	889	536.3	1372.5	1377	$C_2H_6S_3$
163	1-propanone, 1-(2-furanyl)-	3194-15-8	828	695.6	1573.3	1563	$C_7H_8O_2$
164	phenol, 2-methoxy-	90-05-1	931	889.8	1857.8	1861	$C_7H_8O_2$
165	furan, 2-methyl-	534-22-5	946	95.8	881.6	869	C₅H₀O
166	4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6- methyl-	28564-83-2	892	1126.1	2263.8	2267	$C_6H_8O_4$
167	2(5H)-furanone, 3-methyl-	22122-36-7	876	796.1	1714.8	1713	$C_5H_6O_2$
168	thiazole	288-47-1	945	421.3	1246.7	1248	C ₃ H ₃ NS
169	2-thiophene carboxaldehyde	98-03-3	948	780.4	1691.8	1684	C₅H₄OS
170	furan, 2-[(methylthio)methyl]-	1438-91-1	857	640.5	1499.7	1491	C ₆ H ₈ OS
171	1-propanone, 1-(5-methyl-2-furanyl)-	10599-69-6	801	770.7	1678	1670	$C_8H_{10}O_2$
172	1H-pyrrole-2-carboxaldehyde, 1-methyl-	1192-58-1	905	727.9	1617.5	1626	C ₆ H ₇ NO
173	furan, 2,2'-methylenebis-	1197-40-6	909	721.2	1608	1632	$C_9H_8O_2$
174	benzofuran	271-89-6	887	642.0	1501.6	1489	C ₈ H ₆ O
175	thiophene, 3-methyl-	616-44-4	916	285.0	1115.1	1122	C₅H ₆ S
176	pyrazine, 2-ethyl-3-methyl-	15707-23-0	822	556.9	1396	1407	$C_7H_{10}N_2$
177	2-butanone, 4-(5-methyl-2-furanyl)-	13679-56-6	809	793.4	1710.7	1705	$C_9H_{12}O_2$
178	2-furanmethanol	98-00-0	924	757.5	1659.4	1660	$C_5H_6O_2$
179	2-furancarboxaldehyde, 5-methyl-	620-02-0	939	694.6	1572.1	1570	$C_6H_6O_2$
180	1H-pyrrole, 1-(2-furanylmethyl)-	1438-94-4	919	870.2	1827	1824	C₀H₀NO
181	4-cyclopentene-1,3-dione	930-60-9	893	703.9	1584.5	1573	$C_5H_4O_2$
182	maltol	118-71-8	916	955.9	1964.4	1969	C ₆ H ₆ O ₃
183	phenol, 4-ethyl-2-methoxy-	2785-89-9	873	993.1	2026.7	2032	$C_9H_{12}O_2$
184	1-(2-thienyl)-1-propanone	13679-75-9	866	875.5	1835.2	1833	C ₇ H ₈ OS
185	2-furanone, 2,5-dihydro-3,5-dimethyl		858	748.2	1646.3	1639	$C_6H_8O_2$
186	ethanone, 1-(3-thienyl)-	1468-83-3	857	834.7	1772.6	1771	C₀H₀OS
187	pyrazine, 2,6-diethyl-	13067-27-1	870	581.6	1426.3	1444	$C_8H_{12}N_2$
188	benzofuran, 2-methyl-	4265-25-2	908	708.5	1590.6	1576	C∘HଃO
189	pyrazine, 2,6-dimethyl-	108-50-9	882	490.7	1320.3	1328	$C_6H_8N_2$
190	pyrazine, ethyl-	13925-00-3	915	496.6	1327.1	1337	C ₆ H ₈ N ₂
191	pyrazine, 2-ethyl-6-methyl-	13925-03-6	906	540.7	1377.5	1386	$C_7H_{10}N_2$
192	3-hexanone	589-38-8	939	216.9	1051.6	1053	C ₆ H ₁₂ O
193	2-butanone, 1-(2-furanyl)-	4208-63-3	837	713.3	1597	1584	$C_8H_{10}O_2$
194	pyrazine, methyl-	109-08-0	959	434.6	1260.4	1266	$C_5H_6N_2$
195	acetophenone, 4'-hydroxy-	99-93-4	885	851.2	1797.3	1788	$C_8H_8O_2$
196	ethanone, 1-(2-thienyl)-	88-15-3	853	830.3	1766	1763	C₀H₀OS
197	pyrazine	290-37-9	928	383.9	1208	1212	$C_4H_4N_2$
198	2-isobutyl-3-methylpyrazine	13925-06-9	840	625.0	1480.4	1490	$C_9H_{14}N_2$