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Plastics recycling is in trouble

Consumer product companies have walked back their plastics sustainability goals,
and many recyclers are closing their doors
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Chemical conversion of plastic waste into fuels
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Chemical conversion of plastic waste into fuels

Fuel 273 (2020) 117726

Contents lists available at ScienceDirect H
(4] ]

Fuel 294 (2021) 120505

Contents lists available at ScienceDirect H
FERER

Chemical Engineering Journal 460 (2023) 141764

ELSEVIER

g AL
Full Length A @ “lo

Journal of Environmental Chemical Engineering 12 (2024) 113836

hydrother S
y Full Length A1 v
a,b,1 _}j . by CagriUn

Kai Jin™™ -~ =
> Low-press iy gEyIER Nien-Hwa Liz b
+sooctof mrsmers clean fuel #RSC #® roval socieTy
 Deparmment of Plast T Davidson & &% . SRR w
o % gﬁl@?&} . . . .
—— Kai Jin®, Pet 2 Departme =k . Sustal 1 Sustainable Chemistry for Climate Action
St of g Productlm [:LSI:\/H:R ‘_Jk_‘:t{)l SRR
b Department j('.'hem 1 Los Angel_ ELSEVIER =’£?;?ﬁ\f“= 'ﬁ::
s sous 7 PYTOLYSIS €. Author to I om} & :
Petr Straka® 34 International Journal of Hydrogen Energy
ety of Gt Processes 2[-Low-p-rtf_-ss‘ P— SRR Volume 200, 14 January 2026, 152882
b California State Univ into oils FI. 0 r
Submission Cite this: DOI: 10 ‘

Published: 2Clayton Gen

Davidson School of Tra’ r
(This article E* Deparmment of Ch From WaSte COVID 19 face maSl(S tO fuel

Industry (Il)————— 0 Cte . : . .
e Pyrolysis-oil/diesel blends with hydrogen
rrc eIFIChment in a Cl engine

Show mc
Umit Agbulut @ de O = Fikret Polat , Mustafa Karagoz <, Suat Saridemir b




I—0—T
|

}[ PE oligomers (D)
C o
(B) . cyclics
Rl—f'—f'—Rz n-paraffins
HoH N (|) ([E)

©| (M e gy () < oleflns

Rl\c/ ‘\C/H .
ﬂ l aromatics
H H v (I) N
. . c
R-c-c—r jsoparaffins
R, H | (B) (F)
C
|’|| |'|| A I-|| T . Ry /E\\C/E\C/H
C—C PP c—c PP ollgomers ﬁ | ] multi-ring aromatics
n-x

O—I

—

| | | | N e 1

H  CH| H CH .

U

Potential reaction pathways of PE and PP co-processing under LP-HTP. (A) depolymerization, (B) B-scission, (C) hydrogen
abstraction, (D) cyclization, (E) dehydrogenation, (F) formation of multi-ring aromatics, (G) isomerization, (H) formation of short
n-paraffins (C.), (1) further cracking to gases. The thickness of the arrows indicates the relative amounts of products.
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How to quantify olefins in complex samples as detailed as possible?

Trends in Analytical Chemistry 193 (2025) 118463

Contents lists available at ScienceDirect

Trends in Analytical Chemistry
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Toward accurate olefin quantification in plastic waste oils: Analytical
strategies and future directions

c,d,e
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Titration Spectroscopy Chromatography Selective
LC GC methods
FIA GC (g) GC-VUV
HPLC GC (/) Soft ionization MS
SFC GCxGC Derivatizations
Adsorptions

Click a method to explore more details

Auersvald, M.; Barzallo, G.; Gieng, H.; Patel, J.; Sharma, A.; Van Geem, K. M.; Straka, P.; Vozka, P. Toward Accurate
Olefin Quantification in Plastic Waste Oils: Analytical Strategies and Future Directions. TrAC Trends Anal. Chem. 2025.



Bromine Number
(BrN)

Application Range Advantages Limitations
Primarily in the light and Simple, standardized, and Solubility and boiling range
middle distillate fractions widely reported, providing a constraints, under- or
boiling below ~327 °C, where rapid comparative measure of overestimation due to olefin
it serves as a comparative olefinic unsaturation. type, and interference from
rather than absolute measure heteroatom- and aromatic
of olefin unsaturation. ASTM species, making it unreliable
D1159. as an absolute measure of

total unsaturation.

g Br,/100 g sample
Auersvald, M.; Barzallo, G.; Gieng, H.; Patel, J.; Sharma, A.; Van Geem, K. M.; Straka, P.; Vozka, P. Toward Accurate

Olefin Quantification in Plastic Waste Oils: Analytical Strategies and Future Directions. TrAC Trends Anal. Chem. 2025. m
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Titration Spectroscopy Chromatography Selective
LC GC methods
FIA GC (g) GC-VUV
HPLC GC (/) Soft ionization MS
SFC GCxGC Derivatizations
Adsorptions

Click a method to explore more details

Auersvald, M.; Barzallo, G.; Gieng, H.; Patel, J.; Sharma, A.; Van Geem, K. M.; Straka, P.; Vozka, P. Toward Accurate
Olefin Quantification in Plastic Waste Oils: Analytical Strategies and Future Directions. TrAC Trends Anal. Chem. 2025.



Comprehensive Two-Dimensional Gas Chromatography
(GC X GC)

Application Range Advantages Limitations
Applicable to detailed Unparalleled resolution, Labor-intensive, requires
compositional and reduced co-elution, and robust complex instrumentation and
guantitative analysis of POs compound-level quantification data processing, and struggles to
and hydrothermal products, (especially when coupled with fully distinguish olefins and
resolving paraffins, olefins, FID, TOFMS, or HRMS), enabling cycloparaffins or diolefins and
diolefins, cycloparaffins, accurate group-type and unsaturated naphthenes,
aromatics, and oxygenates structural assignments in absolute quantitation needs
across wide boiling ranges. complex PO matrices. complementary methods.

Individual + group content (wt%)
Auersvald, M.; Barzallo, G.; Gieng, H.; Patel, J.; Sharma, A.; Van Geem, K. M.; Straka, P.; Vozka, P. Toward Accurate

Olefin Quantification in Plastic Waste Oils: Analytical Strategies and Future Directions. TrAC Trends Anal. Chem. 2025. m




Bromine number
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Titration

Bromine index

lodine value

|

g Br,/100g
mg Br/100 g
g 1/100g

Total “olefin” content

Spectroscopy Chromatography
LC GC
(- )
FTIR FIA GC (g)
Raman HPLC GC (/)
\_ /
NMR SFC GCxGC

FIA reports some dienes and heteroatomic
compounds as aromatics

HPLC-RI overestimates monoaromatics, while
underestimating polyaromatics

Selective
methods

GC-VUV

Soft ionization MS

Derivatizations

Adsorptions
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Commercial Diesel fuel HTP Diesel fuel
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Diesel fuel distillation range pyrolysis oil after hydrotreating (270 °C and 6 MPa )
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Where do alkenes elute?
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Where do alkenes elute?
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Titration Spectroscopy Chromatography Selective
LC GC methods
FIA GC (g) GC-VUV
HPLC GC (/) Soft ionization MS
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GCxGC-FID and adsorption by Ag-Si0,

Talanta 281 (2025) 126792

Contents lists available at ScienceDirect

Talanta

Talanta

ELSEVIER journal homepage: www.elsevier.com/locate/talanta

Quantitative determination of olefins in pyrolysis oils from waste plastics %=
and tires using selective adsorption by Ag-SiO, followed by GCxGC-FID

Milos Auersvald ™ , Michal Siman”, Petr Vozka ", Petr Straka”

* Department of Sustoinable Fuels and Green Chemistry, University of Chemisiny and Technology Progue, Technickd 5, 166 28 Prague 6, Czech Republic
b California State University, Los Angeles, State University, Drive 5151, CA, 90032, Los Angeles, United Stotes




At least n-alkanes are safe..., right?

Neat sample After alkene adsorption
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Auersvald, M., Siman, M., Vozka, P., Straka, P. (2025). Quantitative determination of olefins in pyrolysis oils from
waste plastics and tires using selective adsorption by Ag-SiO, followed by GCxGC-FID, Talanta, 281, 126792.



At least n-alkanes are safe..., right?

Neat sample After alkene adsorption
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n-alkane content (wt%) C10 C11 C12 C13 C14 C15
apparent with olefins (A) 2.65 3.16 3.34 5.05 1.86 0.07
real without olefins (B) 2.12 3.00 3.24 3.27 1.84 0.06

Auersvald, M., Siman, M., Vozka, P., Straka, P. (2025). Quantitative determination of olefins in pyrolysis oils from
waste plastics and tires using selective adsorption by Ag-SiO, followed by GCxGC-FID, Talanta, 281, 126792.



Olefins separation over Ag-Si0,

SPE cartridge

loading 1.45 +0.03 g

particle size 0.040-0.063 mm

Method

50 ulL of sample

15 min for separation

(1 - cooled block with 2 mL vials, 2 - SPE column filled with Ag-S10,, 3 - reservoir with dry ice)



Olefins separation over Ag-Si0,

e precise and accurate
results across a wide
range of samples for
olefin content >5 wt%

« the most cost-effective
approach for olefin
content (wt%) in WPPQO
samples

Auersvald, M., Vozka, P., & Straka, P. (2025). Quantitative determination of olefins in pyrolysis oils from waste
plastics and tires using by Ag-SiO, followed by GCxGC-FID, Talanta, 281, 126792.
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Quantitation of aliphatic and aromatic alkenes (up to 50 wt. %)

Sample + Internal Standard +
DMDS + |, solution

4

70 °C oven for at least an hour

4

Sodium Thiosulfate

4

Organic phase analyzed




Polarity

Pre-
derivatization

Post-derivatization

v

Boiling Point
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Fuels in jet-fuel boiling point
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Before
n-Alkanes

Isoalkanes

Monocycloalkanes

Dicycloalkanes

Tricycloalkanes

Aromatics
Light hydrocarbons

wt. %
1.54

0.86

4.43

27.01

4.60

53.66
7.90

After

n-Alkanes

Isoalkanes
Isoalkenes
Monocycloalkanes

~ Linear alkenes
~ Qlefins with 1 double bond

Dicycloalkanes
Olefins with 2 double bonds
Tricycloalkanes
Olefins with 3 double bonds

Aromatics
Light hydrocarbons

wt. %

1.54
0.64
0.22
0.96
1.04
2.43
1.80

25.20
1.10
3.50

53.66
7.90



Quantitative data - detailed (Waste Tire Pyrolysis Gasoline)

Carbon number

C5

[ c6

C7
C8
C9
C10
C11
C12
Total

Pre-derivatization

“Monocyclo”

(p.a.)
52883.75
81707.23
86175.05
50744.41
56524.36

1839.73
0
0

329874.53

“Monocyclo” “Monocyclo” “Monocyclo”
(p.a. after norm.)

(wt. %) (p.a.)

6.00  38374.69
| 927 | 65393.26

9078 6451559
576  50393.38
641  16947.64
021  553.02
0.00 0
0.00 0
37.44

236177.58 193588.18

31454.66
53601.03
52881.63
41306.05
13891.51
453.30
0
0

Post-derivatization

Olefins
(p-a.)

21429.09
28106.20
33293.42
9438.36
42632.85
1386.43
0
0

136286.35

True results

Olefin  Monocyclo
(wt. %) (wt.%)
2.32 3.68
3.04 623 |
3.61 6.17
1.02 4.74
4.62 1.80
0.15 0.06
0 0.00
0 0.00
14.77 22.67



Quantitation of aliphatic and aromatic alkenes (up to 50 wt. %)

Barzallo, G., Gieng, H., Sharma, A., Patel, J., Auersvald, M., Straka, P., Vozka, P. Quantitative Analysis of Aliphatic Olefins in Alternative Fuels (in gasoline
distillation range) Made from the Conversion of Plastic Waste via GCxGC-FID, J. Chromatogr. A, in preparation

24.99% 21.49% 
25,00% — |

20,00% | 12.56%
o 12.50%
15,00% | == 6.91%
10,00% |
3.02% 00—
5,00%
1.06%
3.11%
0,00% Ay
2 -y
3

4

m Synthetically prepared samples m GCxGC-FID results



« precise and accurate results across
a wide range of samples for olefin
content >3 wt%

« works (“only”) for aliphatic olefins
and alkenylbenzenes, and alkenyl-
substituted alkylbenzenes

0T O

Post-derivatization

* iodine is DEA-regulated at many places

 DMDS....
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« precise and accurate results across
a wide range of samples for olefin
content >5 wt%

« works (“only”) for aliphatic olefins
and alkenylbenzenes, and alkenyl-
substituted alkylbenzenes

0T O

Post-derivatization

lodine is DEA-regulated at many places
DMDS....

70 °C — gasoline-like samples

works only for aliphatic olefins

main problem — heavier iso-alkenes are
not shifting to the aromatic region




Chromatogram = diesel-like sample pre-derivatization
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Chromatogram = diesel-like sample post-derivatization
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* |odine —hard to buy in some places (like CA) = TPO (photoinitiator)

* DMDS 2{DBDS, DPhDS, DBzDS, ...

e« 70°C - room temperature

e Main prv heavier iso-alkenes = not shifting to the aromatic region



S CHy ﬁﬁsﬁw

H4C

S

Dibutyl Disulfide (CgH,5S,)
Dimethyl Disulfide (C,H,S,)

oo oo

Diphenyl Disulfide (C;,H,,S,) Dibenzyl Disulfide (C,,H,S,)
/\/\/\/\><3’S7<\/\/\/\/

Di-tert-dodecyl Disulfide (C,,H<,S,)

(...)



Reagents Time (hours) Temperature (°C) Solvent (eqljiizrent)

Dimethyl Disulfide 1 RT - 1,1.5
12 40
24 70

Diphenyl Disulfide 1 RT Diethyl ether 1,1.5
12 40
24 70

Dibenzyl Disulfide 1 RT - 1,1.5
12 40
24 70

Dibutyl Disulfide 1 70 Diethyl ether 1,1.5
24 70

Di-tert-dodecyl Dis. 1 RT Diethyl ether 1,1.5
12 40
24 70




Results = 12 hours & RT
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Results =12 hours & 70 °C

Di-tert-dodecyl disulfide
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Previous work
* Dimethyl Disulfide effective at 70 °C for 24 hours for gasoline (C; to C,,)

* Unsuitable for heavier fuels — jet and diesel

Current work

e Testing additional (“heavier”) disulfides: DBuDS, Ph,S,, DBDS, Di-tert-
dodecyl DS, ...

* Exploring reaction conditions for complete derivatization

Validation

 'H-NMR Spectroscopy: confirmed successful derivatization with
consistent spectral shifts

 Next: analyzing synthetic mixtures with known olefin content + TOFMS
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